Yeoh Michelle L Y, Ukritnukun Supphatuch, Rawal Aditya, Davies Justin, Kang Beom J, Burrough Keenan, Aly Zaynab, Dayal Pranesh, Vance Eric R, Gregg Daniel J, Koshy Pramod, Sorrell Charles C
School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW 2052, Australia.
J Hazard Mater. 2021 Apr 5;407:124805. doi: 10.1016/j.jhazmat.2020.124805. Epub 2020 Dec 14.
The mechanistic effects of long-term γ irradiation on the mineralogical, microstructural, structural, physical, and chemical properties of 40 wt% blast furnace slag + 60 wt% fly ash geopolymer pastes have been examined. Ambient curing for 28 days during normal equilibration was followed by exposure to Co irradiation (1574, 4822, 10,214 kGy). The material characteristics are controlled largely through the competing mechanisms of beneficial equilibration at initial lower dosages, which enhances gelation and crosslinking, and detrimental equilibration at subsequent higher dosages, which causes structural and microstructural destabilisation. Irradiation for 2 months (1574 kGy) increases the compressive strength 45% (57 to 83 MPa) through conversion of less-crosslinked (Q/Q/Q) to more-crosslinked (Q/Q/Q) silicate species. The transition between these regimes occurs after ~5 months of irradiation (4000 kGy). Beyond this, the rates of beneficial equilibration and detrimental equilibration equalise upon completion of normal geopolymerisation. Additional geopolymerisation from γ irradiation is controlled by the rate-limiting release of Si from the unreacted aluminosilicates and silicates and their rapid incorporation in the geopolymer network. The aqueous leaching of the geopolymer pastes is not affected significantly by γ irradiation. These data reveal the potential for these materials as intermediate-level wasteforms that can outperform Portland cement-based materials.
研究了长期γ辐照对40 wt%高炉矿渣+60 wt%粉煤灰地质聚合物浆体的矿物学、微观结构、结构、物理和化学性质的作用机制。在正常平衡过程中进行28天的环境养护,随后进行钴辐照(1574、4822、10214 kGy)。材料特性在很大程度上受以下竞争机制控制:在初始较低剂量下的有益平衡,可增强凝胶化和交联;在随后较高剂量下的有害平衡,会导致结构和微观结构不稳定。2个月(1574 kGy)的辐照通过将交联较少的(Q/Q/Q)硅酸盐物种转化为交联较多的(Q/Q/Q)硅酸盐物种,使抗压强度提高约45%(从约57 MPa提高到约83 MPa)。这些状态之间的转变发生在辐照约5个月(约4000 kGy)之后。在此之后,在正常地质聚合完成时,有益平衡和有害平衡的速率达到相等。γ辐照引发的额外地质聚合受未反应的铝硅酸盐和硅酸盐中硅的限速释放及其在地质聚合物网络中的快速掺入控制。地质聚合物浆体的水浸出不受γ辐照的显著影响。这些数据揭示了这些材料作为中级废物固化体的潜力,其性能可能优于波特兰水泥基材料。