Suppr超能文献

优化并表征源自菲律宾粉煤灰、煤底灰和稻壳灰三元混合物的地质聚合物

Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash.

作者信息

Kalaw Martin Ernesto, Culaba Alvin, Hinode Hirofumi, Kurniawan Winarto, Gallardo Susan, Promentilla Michael Angelo

机构信息

Mechanical Engineering Department, De La Salle University, Manila 1004, Philippines.

International Development Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan.

出版信息

Materials (Basel). 2016 Jul 15;9(7):580. doi: 10.3390/ma9070580.

Abstract

Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC), which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1) their technical properties are comparable if not better; (2) they can be produced from industrial wastes; and (3) within reasonable constraints, their production requires less energy and emits significantly less CO₂. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC) use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA) and coal bottom ash (CBA), and rice hull ash (RHA). The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF) for elemental and X-ray diffraction (XRD) for mineralogical composition. The raw materials' thermal stability and loss on ignition (LOI) were determined using thermogravimetric analysis (TGA) and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP) analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Using a Scheffé-based mixture design, targeting applications with low thermal conductivity, light weight and moderate strength and allowing for a maximum of five percent by mass of rice hull ash in consideration of the waste utilization of all three components, it has been determined that an 85-10-5 by weight ratio of CFA-CBA-RHA activated with 80-20 by mass ratio of 12 M NaOH and sodium silicate (55% H₂O, modulus = 3) produced geopolymers with a compressive strength of 18.5 MPa, a volumetric weight of 1660 kg/m³ and a thermal conductivity of 0.457 W/m-°C at 28-day curing when pre-cured at 80 °C for 24 h. For this study, the estimates of embodied energy and CO₂ were all below 1.7 MJ/kg and 0.12 kg CO₂/kg, respectively.

摘要

地质聚合物是由无定形铝硅酸盐材料经碱激发形成的无机聚合物,会形成三维聚合物网络。作为一类材料,它被认为有潜力替代普通硅酸盐水泥(OPC),在一百多年来,普通硅酸盐水泥一直是结构和建筑应用中首选的粘结剂。地质聚合物相对于普通硅酸盐水泥而言已成为一种可持续的选择,原因有三:(1)它们的技术性能即便不比普通硅酸盐水泥更好也相当;(2)它们可以由工业废料生产;(3)在合理的限制范围内,其生产所需能量更少,二氧化碳排放量也显著更低。在菲律宾,使用富含氧化铝和二氧化硅的煤灰作为地质聚合物前驱体,正被视为可持续管理燃煤电厂产生的煤灰的选择之一。然而,大多数地质聚合物混合物(以及普遍使用的混合普通硅酸盐水泥)仅使用粉煤灰。煤底灰的应用极少,仍被运往垃圾场。来自生物质发电厂的稻壳灰是该国另一种富含二氧化硅的地质聚合物前驱体材料,但其利用率极低。在本研究中,地质聚合物样品由煤灰(同时使用粉煤灰(CFA)和煤底灰(CBA))与稻壳灰(RHA)的混合物制成。用于地质聚合过程的原材料通过X射线荧光光谱仪(XRF)进行元素表征,通过X射线衍射仪(XRD)进行矿物成分表征。使用热重分析(TGA)测定原材料的热稳定性和烧失量(LOI),并通过溶解试验和电感耦合等离子体质谱(ICP)分析测定其反应活性。对形成的地质聚合物的力学、热学和微观结构性能进行压缩试验、傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)和热重分析(TGA)分析。采用基于Scheffé的混合物设计,目标是应用于低导热性、轻质和中等强度的领域,并考虑到所有三种成分的废料利用,允许稻壳灰的最大质量百分比为5%,已确定以质量比80 - 20的12 M氢氧化钠和硅酸钠(55% H₂O,模量 = 3)活化的质量比为85 - 10 - 5的CFA - CBA - RHA所制备的地质聚合物,在80 °C预养护24 h后,28天养护时的抗压强度为18.5 MPa,体积重量为1660 kg/m³,导热系数为0.457 W/m - °C。对于本研究,其体现的能量和二氧化碳排放量的估计值分别均低于1.7 MJ/kg和0.12 kg CO₂/kg。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc56/5456922/e75614a430e2/materials-09-00580-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验