Suppr超能文献

宿主转录组对伯氏疏螺旋体的反应。

Host transcriptome response to Borrelia burgdorferi sensu lato.

机构信息

Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States.

出版信息

Ticks Tick Borne Dis. 2021 Mar;12(2):101638. doi: 10.1016/j.ttbdis.2020.101638. Epub 2020 Dec 13.

Abstract

The host immune response to infection is a well-coordinated system of innate and adaptive immune cells working in concert to prevent the colonization and dissemination of a pathogen. While this typically leads to a beneficial outcome and the suppression of disease pathogenesis, the Lyme borreliosis bacterium, Borrelia burgdorferi sensu lato, can elicit an immune profile that leads to a deleterious state. As B. burgdorferi s.l. produces no known toxins, it is suggested that the immune and inflammatory response of the host are responsible for the manifestation of symptoms, including flu-like symptoms, musculoskeletal pain, and cognitive disorders. The past several years has seen a substantial increase in the use of microarray and sequencing technologies to investigate the transcriptome response induced by B. burgdorferi s.l., thus enabling researchers to identify key factors and pathways underlying the pathophysiology of Lyme borreliosis. In this review we present the major host transcriptional outcomes induced by the bacterium across several studies and discuss the overarching theme of the host inflammatory and immune response, and how it influences the pathology of Lyme borreliosis.

摘要

宿主对感染的免疫反应是一个协调良好的固有免疫和适应性免疫细胞系统,共同协作以防止病原体的定植和传播。虽然这通常会导致有益的结果和抑制疾病的发病机制,但莱姆螺旋体细菌,即伯氏疏螺旋体,能够引发导致有害状态的免疫谱。由于伯氏疏螺旋体不产生已知的毒素,因此有人认为宿主的免疫和炎症反应是导致症状表现的原因,包括流感样症状、肌肉骨骼疼痛和认知障碍。在过去的几年中,已经大量使用微阵列和测序技术来研究伯氏疏螺旋体诱导的转录组反应,从而使研究人员能够确定莱姆病病理生理学的关键因素和途径。在这篇综述中,我们介绍了该细菌在几项研究中诱导的主要宿主转录组结果,并讨论了宿主炎症和免疫反应的总体主题,以及它如何影响莱姆病的病理学。

相似文献

1
Host transcriptome response to Borrelia burgdorferi sensu lato.
Ticks Tick Borne Dis. 2021 Mar;12(2):101638. doi: 10.1016/j.ttbdis.2020.101638. Epub 2020 Dec 13.
2
Borrelia burgdorferi hijacks cellular metabolism of immune cells: Consequences for host defense.
Ticks Tick Borne Dis. 2020 May;11(3):101386. doi: 10.1016/j.ttbdis.2020.101386. Epub 2020 Feb 3.
4
Immune Response to : Lessons from Lyme Disease Spirochetes.
Curr Issues Mol Biol. 2021;42:145-190. doi: 10.21775/cimb.042.145. Epub 2020 Dec 8.
6
Expression Profiles of Toll-Like Receptors in the Differentiation of an Infection with Borrelia burgdorferi Sensu Lato Spirochetes.
Arch Immunol Ther Exp (Warsz). 2017 Apr;65(2):175-182. doi: 10.1007/s00005-016-0416-8. Epub 2016 Sep 7.
8
Europe-Wide Meta-Analysis of Borrelia burgdorferi Sensu Lato Prevalence in Questing Ixodes ricinus Ticks.
Appl Environ Microbiol. 2017 Jul 17;83(15). doi: 10.1128/AEM.00609-17. Print 2017 Aug 1.
9
Vector competence studies with hard ticks and Borrelia burgdorferi sensu lato spirochetes: A review.
Ticks Tick Borne Dis. 2020 May;11(3):101359. doi: 10.1016/j.ttbdis.2019.101359. Epub 2019 Dec 14.
10
Geographical and genospecies distribution of Borrelia burgdorferi sensu lato DNA detected in humans in the USA.
J Med Microbiol. 2014 May;63(Pt 5):674-684. doi: 10.1099/jmm.0.073122-0. Epub 2014 Feb 25.

引用本文的文献

2
Bridging the gap: Insights in the immunopathology of Lyme borreliosis.
Eur J Immunol. 2024 Dec;54(12):e2451063. doi: 10.1002/eji.202451063. Epub 2024 Oct 13.
4
Cellular and transcriptome signatures unveiled by single-cell RNA-Seq following infection of murine splenocytes with .
Front Immunol. 2023 Dec 8;14:1296580. doi: 10.3389/fimmu.2023.1296580. eCollection 2023.
6
Anti-chemokine antibodies after SARS-CoV-2 infection correlate with favorable disease course.
bioRxiv. 2022 Nov 27:2022.05.23.493121. doi: 10.1101/2022.05.23.493121.
7
Comprehensive Mapping of the Cell Response to in the Brain Microvascular Endothelial Cells Using RNA-Seq.
Front Microbiol. 2021 Nov 8;12:760627. doi: 10.3389/fmicb.2021.760627. eCollection 2021.

本文引用的文献

1
The Lyme disease bacterium, Borrelia burgdorferi, stimulates an inflammatory response in human choroid plexus epithelial cells.
PLoS One. 2020 Jul 9;15(7):e0234993. doi: 10.1371/journal.pone.0234993. eCollection 2020.
3
TREM1 Blockade: Killing Two Birds with One Stone.
Trends Immunol. 2019 Sep;40(9):781-783. doi: 10.1016/j.it.2019.07.008. Epub 2019 Aug 20.
4
CD83: Activation Marker for Antigen Presenting Cells and Its Therapeutic Potential.
Front Immunol. 2019 Jun 7;10:1312. doi: 10.3389/fimmu.2019.01312. eCollection 2019.
5
An Overview of Peripheral Blood Mononuclear Cells as a Model for Immunological Research of and Other Apicomplexan Parasites.
Front Cell Infect Microbiol. 2019 Feb 8;9:24. doi: 10.3389/fcimb.2019.00024. eCollection 2019.
6
Human Dendritic Cells: Their Heterogeneity and Clinical Application Potential in Cancer Immunotherapy.
Front Immunol. 2019 Jan 21;9:3176. doi: 10.3389/fimmu.2018.03176. eCollection 2018.
8
How ERAP1 and ERAP2 Shape the Peptidomes of Disease-Associated MHC-I Proteins.
Front Immunol. 2018 Oct 30;9:2463. doi: 10.3389/fimmu.2018.02463. eCollection 2018.
10
miRNAs reshape immunity and inflammatory responses in bacterial infection.
Signal Transduct Target Ther. 2018 May 25;3:14. doi: 10.1038/s41392-018-0006-9. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验