Suppr超能文献

利用基于地理位置的长短时记忆网络直接估算 Himawari-8 卫星的大气上行反射率的逐时 PM 浓度。

Estimate hourly PM concentrations from Himawari-8 TOA reflectance directly using geo-intelligent long short-term memory network.

机构信息

School of Geodesy and Geomatics, Wuhan University, Wuhan, China.

School of Geodesy and Geomatics, Wuhan University, Wuhan, China.

出版信息

Environ Pollut. 2021 Feb 15;271:116327. doi: 10.1016/j.envpol.2020.116327. Epub 2020 Dec 16.

Abstract

Fine particulate matter (PM) has attracted extensive attention because of its baneful influence on human health and the environment. However, the sparse distribution of PM measuring stations limits its application to public utility and scientific research, which can be remedied by satellite observations. Therefore, we developed a Geo-intelligent long short-term network (Geoi-LSTM) to estimate hourly ground-level PM concentrations in 2017 in Wuhan Urban Agglomeration (WUA). We conducted contrast experiments to verify the effectiveness of our model and explored the optimal modeling strategy. It turned out that Geoi-LSTM with TOA reflectance, meteorological conditions, and NDVI as inputs performs best. The station-based cross-validation R, root mean squared error and mean absolute error are 0.82, 15.44 μg/m, 10.63 μg/m, respectively. Based on model results, we revealed spatiotemporal characteristics of PM in WUA. Generally speaking, during the day, PM concentration remained stable at a relatively high level in the morning and decreased continuously in the afternoon. While during the year, PM concentrations were highest in winter, lowest in summer, and in-between in spring and autumn. Combined with meteorological conditions, we further analyzed the whole process of a PM pollution event. Finally, we discussed the loss in removing clouds-covered pixels and compared our model with several popular models. Overall, our results can reflect hourly PM concentrations seamlessly and accurately with a spatial resolution of 5 km, which benefits PM exposure evaluations and policy regulations.

摘要

细颗粒物(PM)因其对人类健康和环境的有害影响而受到广泛关注。然而,PM 测量站的稀疏分布限制了其在公共事业和科学研究中的应用,可以通过卫星观测来弥补。因此,我们开发了一种 Geo-intelligent 长短时记忆网络(Geoi-LSTM),以估计 2017 年武汉城市群(WUA)的逐时地面 PM 浓度。我们进行了对比实验来验证我们模型的有效性,并探索了最佳建模策略。结果表明,输入 TOA 反射率、气象条件和 NDVI 的 Geoi-LSTM 表现最佳。基于站点的交叉验证 R、均方根误差和平均绝对误差分别为 0.82、15.44μg/m 和 10.63μg/m。基于模型结果,我们揭示了 WUA 中 PM 的时空特征。总体而言,在白天,PM 浓度在早晨保持相对较高的稳定水平,并在下午持续下降。而在一年中,PM 浓度冬季最高,夏季最低,春季和秋季介于两者之间。结合气象条件,我们进一步分析了 PM 污染事件的全过程。最后,我们讨论了去除云层覆盖像素的损失,并将我们的模型与几种流行的模型进行了比较。总体而言,我们的结果可以以 5km 的空间分辨率无缝且准确地反映逐时 PM 浓度,这有利于 PM 暴露评估和政策法规。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验