Suppr超能文献

操纵子的蛋白质剂量与核糖核酸酶E依赖性的信使核糖核酸加工相关。

Protein dosage of the operon is correlated with RNase E-dependent mRNA processing.

作者信息

Angel-Lerma Lidia E, Merino Enrique, Kwon Ohsuk, Medina-Aparicio Liliana, Hernández-Lucas Ismael, Alvarez Adrián F, Georgellis Dimitris

机构信息

Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México.

Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.

出版信息

J Bacteriol. 2020 Dec 23;203(6). doi: 10.1128/JB.00555-20.

Abstract

The ability of to grow on L-lactate as a sole carbon source depends on the expression of the operon. A striking feature of this operon is that the transcriptional regulator (LldR) encoding gene is located between the permease (LldP) and the dehydrogenase (LldD) encoding genes. In this study we report that dosage of the LldP, LldR, and LldD proteins is not modulated on the transcriptional level. Instead, modulation of protein dosage is primarily correlated with RNase E-dependent mRNA processing events that take place within the mRNA, leading to the immediate inactivation of , to differential segmental stabilities of the resulting cleavage products, and to differences in the translation efficiencies of the three cistrons. A model for the processing events controlling the molar quantities of the proteins in the operon is presented and discussed.Adjustment of gene expression is critical for proper cell function. For the case of polycistronic transcripts, posttranscriptional regulatory mechanisms can be used to fine-tune the expression of individual cistrons. Here, we elucidate how protein dosage of the operon, which presents the paradox of having the gene encoding a regulator protein located between genes that code for a permease and an enzyme, is regulated. Our results demonstrate that the key event in this regulatory mechanism involves the RNase E-dependent cleavage of the primary transcript at internal site(s) located within the cistron, resulting in a drastic decrease of intact mRNA, to differential segmental stabilities of the resulting cleavage products, and to differences in the translation efficiencies of the three cistrons.

摘要

以L-乳酸盐作为唯一碳源生长的能力取决于操纵子的表达。该操纵子的一个显著特征是,编码转录调节因子(LldR)的基因位于通透酶(LldP)和脱氢酶(LldD)编码基因之间。在本研究中,我们报告LldP、LldR和LldD蛋白的剂量在转录水平上未受到调节。相反,蛋白剂量的调节主要与发生在操纵子mRNA内的依赖于核糖核酸酶E的mRNA加工事件相关,导致操纵子mRNA立即失活,产生的切割产物具有不同的片段稳定性,以及三个顺反子的翻译效率存在差异。本文提出并讨论了一个控制操纵子中蛋白质摩尔量的加工事件模型。基因表达的调节对于细胞的正常功能至关重要。对于多顺反子转录本的情况,转录后调节机制可用于微调各个顺反子的表达。在这里,我们阐明了具有编码调节蛋白的基因位于编码通透酶和一种酶的基因之间这一矛盾情况的操纵子的蛋白剂量是如何被调节的。我们的结果表明,这种调节机制的关键事件涉及核糖核酸酶E依赖的初级操纵子转录本在操纵子顺反子内的内部位点处的切割,导致完整操纵子mRNA急剧减少,产生的切割产物具有不同的片段稳定性,以及三个顺反子的翻译效率存在差异。

相似文献

1
Protein dosage of the operon is correlated with RNase E-dependent mRNA processing.
J Bacteriol. 2020 Dec 23;203(6). doi: 10.1128/JB.00555-20.
2
Dual role of LldR in regulation of the lldPRD operon, involved in L-lactate metabolism in Escherichia coli.
J Bacteriol. 2008 Apr;190(8):2997-3005. doi: 10.1128/JB.02013-07. Epub 2008 Feb 8.
4
Lactate utilization is regulated by the FadR-type regulator LldR in Pseudomonas aeruginosa.
J Bacteriol. 2012 May;194(10):2687-92. doi: 10.1128/JB.06579-11. Epub 2012 Mar 9.
5
Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum.
J Bacteriol. 2008 Feb;190(3):963-71. doi: 10.1128/JB.01147-07. Epub 2007 Nov 26.
6
Translation Initiation Control of RNase E-Mediated Decay of Polycistronic mRNA.
Front Mol Biosci. 2020 Nov 6;7:586413. doi: 10.3389/fmolb.2020.586413. eCollection 2020.
7
In vitro analysis of mRNA processing by RNase E in the pap operon of Escherichia coli.
Mol Microbiol. 1996 Jul;21(1):55-68. doi: 10.1046/j.1365-2958.1996.6121101.x.

本文引用的文献

1
Extensive reshaping of bacterial operons by programmed mRNA decay.
PLoS Genet. 2018 Apr 18;14(4):e1007354. doi: 10.1371/journal.pgen.1007354. eCollection 2018 Apr.
2
In Vivo Cleavage Map Illuminates the Central Role of RNase E in Coding and Non-coding RNA Pathways.
Mol Cell. 2017 Jan 5;65(1):39-51. doi: 10.1016/j.molcel.2016.11.002.
3
RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond.
Nucleic Acids Res. 2016 Jan 4;44(D1):D133-43. doi: 10.1093/nar/gkv1156. Epub 2015 Nov 2.
4
Secondary Structure across the Bacterial Transcriptome Reveals Versatile Roles in mRNA Regulation and Function.
PLoS Genet. 2015 Oct 23;11(10):e1005613. doi: 10.1371/journal.pgen.1005613. eCollection 2015 Oct.
5
Quantifying the effect of ribosomal density on mRNA stability.
PLoS One. 2014 Jul 14;9(7):e102308. doi: 10.1371/journal.pone.0102308. eCollection 2014.
8
Differential translation tunes uneven production of operon-encoded proteins.
Cell Rep. 2013 Sep 12;4(5):938-44. doi: 10.1016/j.celrep.2013.07.049. Epub 2013 Sep 5.
9
10
Small RNA-mediated activation of sugar phosphatase mRNA regulates glucose homeostasis.
Cell. 2013 Apr 11;153(2):426-37. doi: 10.1016/j.cell.2013.03.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验