Alalam Hanna, Graf Fabrice E, Palm Martin, Abadikhah Marie, Zackrisson Martin, Boström Jonas, Fransson Alfred, Hadjineophytou Chris, Persson Linnéa, Stenberg Simon, Mattsson Matilda, Ghiaci Payam, Sunnerhagen Per, Warringer Jonas, Farewell Anne
Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.
mSystems. 2020 Dec 22;5(6):e01226-20. doi: 10.1128/mSystems.01226-20.
The rapid horizontal transmission of antibiotic resistance genes on conjugative plasmids between bacterial host cells is a major cause of the accelerating antibiotic resistance crisis. There are currently no experimental platforms for fast and cost-efficient screening of genetic effects on antibiotic resistance transmission by conjugation, which prevents understanding and targeting conjugation. We introduce a novel experimental framework to screen for conjugation-based horizontal transmission of antibiotic resistance between >60,000 pairs of cell populations in parallel. Plasmid-carrying donor strains are constructed in high-throughput. We then mix the resistance plasmid-carrying donors with recipients in a design where only transconjugants can reproduce, measure growth in dense intervals, and extract transmission times as the growth lag. As proof-of-principle, we exhaustively explore chromosomal genes controlling F-plasmid donation within populations, by screening the Keio deletion collection in high replication. We recover all seven known chromosomal gene mutants affecting conjugation as donors and identify many novel mutants, all of which diminish antibiotic resistance transmission. We validate nine of the novel genes' effects in liquid mating assays and complement one of the novel genes' effect on conjugation (). The new framework holds great potential for exhaustive disclosing of candidate targets for helper drugs that delay resistance development in patients and societies and improve the longevity of current and future antibiotics. Further, the platform can easily be adapted to explore interspecies conjugation, plasmid-borne factors, and experimental evolution and be used for rapid construction of strains. The rapid transmission of antibiotic resistance genes on conjugative plasmids between bacterial host cells is a major cause of the accelerating antibiotic resistance crisis. There are currently no experimental platforms for fast and cost-efficient screening of genetic effects on antibiotic resistance transmission by conjugation, which prevents understanding and targeting conjugation. We introduce a novel experimental framework to screen for conjugation-based horizontal transmission of antibiotic resistance between >60,000 pairs of cell populations in parallel. As proof-of-principle, we exhaustively explore chromosomal genes controlling F-plasmid donation within populations. We recover all previously known and many novel chromosomal gene mutants that affect conjugation efficiency. The new framework holds great potential for rapid screening of compounds that decrease transmission. Further, the platform can easily be adapted to explore interspecies conjugation, plasmid-borne factors, and experimental evolution and be used for rapid construction of strains.
接合性质粒上的抗生素抗性基因在细菌宿主细胞之间的快速水平转移是抗生素抗性危机加速的主要原因。目前尚无用于快速且经济高效地筛选基因对通过接合进行的抗生素抗性转移影响的实验平台,这阻碍了对接合作用的理解和靶向研究。我们引入了一种新颖的实验框架,用于并行筛选超过60000对细胞群体之间基于接合的抗生素抗性水平转移。携带质粒的供体菌株通过高通量构建。然后,我们将携带抗性质粒的供体与受体混合,采用一种只有接合子才能繁殖的设计,在密集间隔中测量生长,并将转移时间作为生长延迟提取出来。作为原理验证,我们通过高通量筛选Keio缺失文库,详尽地探索了控制群体内F质粒捐赠的染色体基因。我们找回了所有七个已知的影响作为供体的接合作用的染色体基因突变体,并鉴定出许多新的突变体,所有这些突变体都会降低抗生素抗性转移。我们在液体交配试验中验证了九个新基因的作用,并补充了其中一个新基因对接合作用的影响()。这个新框架在详尽揭示辅助药物候选靶点方面具有巨大潜力,这些靶点可以延缓患者和社会中抗性的发展,并提高现有和未来抗生素的使用寿命。此外,该平台可以轻松地用于探索种间接合、质粒携带因子和实验进化,并用于菌株的快速构建。接合性质粒上的抗生素抗性基因在细菌宿主细胞之间的快速转移是抗生素抗性危机加速的主要原因。目前尚无用于快速且经济高效地筛选基因对通过接合进行的抗生素抗性转移影响的实验平台,这阻碍了对接合作用的理解和靶向研究。我们引入了一种新颖的实验框架,用于并行筛选超过60000对细胞群体之间基于接合的抗生素抗性水平转移。作为原理验证,我们详尽地探索了控制群体内F质粒捐赠的染色体基因。我们找回了所有先前已知的以及许多影响接合效率的新的染色体基因突变体。这个新框架在快速筛选降低转移的化合物方面具有巨大潜力。此外,该平台可以轻松地用于探索种间接合、质粒携带因子和实验进化,并用于菌株的快速构建。