Opt Express. 2021 Jan 4;29(1):1-11. doi: 10.1364/OE.412469.
Using porous silicon (PSi) interferometer sensors, we show the first experimental implementation of the high contrast cleavage detection (HCCD) mechanism. HCCD makes use of dramatic optical signal amplification caused by cleavage of high-contrast nanoparticle labeled reporters instead of the capture of low-index biological molecules. An approximately 2 nm reflectance peak shift was detected after cleavage of DNA-quantum dot reporters from the PSi surface via exposure to a 12.5 nM DNase enzyme solution. This signal change is 20 times greater than the resolution of the spectrometer used for the interferometric measurements, and the interferometric measurements agree with the response predicted by simulations and fluorescence measurements. These proof of principle experiments show a clear path to achieving a real-time, highly sensitive readout for a broad range of biological diagnostic assays that generate a signal via nucleic acid cleavage triggered by specific molecular binding events.
利用多孔硅(PSi)干涉仪传感器,我们首次实验实现了高对比度切割检测(HCCD)机制。HCCD 利用高对比度纳米粒子标记报告分子切割引起的显著光学信号放大,而不是捕获低折射率生物分子。通过将 DNA-量子点报告分子从 PSi 表面切割下来,暴露于 12.5 nM 的 DNase 酶溶液中,检测到约 2nm 的反射峰位移。这种信号变化比用于干涉测量的光谱仪的分辨率大 20 倍,干涉测量与模拟和荧光测量预测的响应一致。这些原理验证实验为实现广泛的生物诊断检测的实时、高灵敏度读出铺平了道路,这些检测通过特定分子结合事件触发的核酸切割产生信号。