Suppr超能文献

用于生物分子高灵敏度单频检测的基于逆设计波导的生物传感器。

Inverse-designed waveguide-based biosensor for high-sensitivity, single-frequency detection of biomolecules.

作者信息

Chung Haejun, Park Junjeong, Boriskina Svetlana V

机构信息

Department of Electrical Engineering, Soongsil University, 06978 Seoul, South Korea.

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Nanophotonics. 2022 Mar 1;11(7):1427-1442. doi: 10.1515/nanoph-2022-0012. eCollection 2022 Mar.

Abstract

Integrated silicon photonic waveguide biosensors have shown great potential for detecting bio-molecules because they enable efficient device functionalization via a well-developed surface chemistry, as well as simple scalable manufacturing, which makes them particularly suitable for low-cost point-of-care diagnostic. The on-chip integrated biosensors can be broadly classified into two types: (i) high-quality factor resonator sensors and (ii) interferometric sensors relying on non-resonant optical elements such as e.g. integrated waveguides. The former type usually requires a broadband or a tunable light source as well as complicated signal post-processing to measure a shift of the resonance frequency, while the latter exhibits a relatively low sensitivity due to the lack of efficient light recycling and phase accumulation mechanism in low quality factor elements. Additionally, high quality factor resonant photonic structures can be very sensitive to the presence of other non-target molecules in the water solution, causing sensor vulnerability to any noise. In this work, we combine a computational "inverse design" technique and a recently introduced high-contrast probe cleavage detection (HCCD) technique to design and optimize waveguide-based biosensors that demonstrate high sensitivity to the target molecule while being less sensitive to noise. The proposed biosensors only require a single frequency (or narrow-band) source and an intensity detector, which greatly simplifies the detection system, making it suitable for point-of-care applications. The optimal integrated sensor design that we demonstrate shows 98.3% transmission for the positive (target detected, probes cleaved) state and 4.9% transmission for the negative (probes are still attached) state at 1550 nm wavelength. The signal intensity contrast (20.06-fold transmission increase) shown in this work is much greater than the shift of the resonance frequency (less than 1% wavelength shift) observed in conventional ring-resonator-based biosensors. The new design may pave the way for realizing a single-frequency highly sensitive and selective optical biosensor system with a small physical footprint and a simple optical readout on a silicon chip.

摘要

集成硅光子波导生物传感器在检测生物分子方面显示出巨大潜力,因为它们通过成熟的表面化学实现高效的器件功能化,以及简单的可扩展制造,这使其特别适合低成本的即时诊断。片上集成生物传感器大致可分为两类:(i)高品质因数谐振器传感器和(ii)依赖于非谐振光学元件(如集成波导)的干涉传感器。前一种类型通常需要宽带或可调谐光源以及复杂的信号后处理来测量谐振频率的偏移,而后一种由于在低品质因数元件中缺乏有效的光回收和相位积累机制,灵敏度相对较低。此外,高品质因数谐振光子结构对水溶液中其他非目标分子的存在可能非常敏感,导致传感器容易受到任何噪声的影响。在这项工作中,我们结合了计算“逆设计”技术和最近引入的高对比度探针裂解检测(HCCD)技术,来设计和优化基于波导的生物传感器,使其对目标分子具有高灵敏度,同时对噪声不太敏感。所提出的生物传感器仅需要单频(或窄带)源和强度探测器,这大大简化了检测系统,使其适合即时应用。我们展示的最佳集成传感器设计在1550nm波长下,正(检测到目标,探针裂解)状态的传输率为98.3%,负(探针仍附着)状态的传输率为4.9%。这项工作中显示的信号强度对比度(传输增加20.06倍)远大于传统基于环形谐振器的生物传感器中观察到的谐振频率偏移(波长偏移小于1%)。这种新设计可能为在硅芯片上实现具有小物理尺寸和简单光学读出的单频高灵敏度和选择性光学生物传感器系统铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/667c/11501463/ab9060e3d5f3/j_nanoph-2022-0012_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验