Suppr超能文献

基于肝纤维化指标的列线图在慢性乙型肝炎相关性肝硬化患者食管静脉曲张识别中的应用

Liver fibrosis index-based nomograms for identifying esophageal varices in patients with chronic hepatitis B related cirrhosis.

作者信息

Xu Shi-Hao, Wu Fang, Guo Le-Hang, Zhang Wei-Bing, Xu Hui-Xiong

机构信息

Department of Medical Ultrasound, Shanghai Tenth People's Hospital of Nanjing Medical University, Shanghai 200072, China.

Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.

出版信息

World J Gastroenterol. 2020 Dec 7;26(45):7204-7221. doi: 10.3748/wjg.v26.i45.7204.

Abstract

BACKGROUND

Esophageal varices (EV) are the most fatal complication of chronic hepatitis B (CHB) related cirrhosis. The prognosis is poor, especially after the first upper gastrointestinal hemorrhage.

AIM

To construct nomograms to predict the risk and severity of EV in patients with CHB related cirrhosis.

METHODS

Between 2016 and 2018, the patients with CHB related cirrhosis were recruited and divided into a training or validation cohort at The First Affiliated Hospital of Wenzhou Medical University. Clinical and ultrasonic parameters that were closely related to EV risk and severity were screened out by univariate and multivariate logistic regression analyses, and integrated into two nomograms, respectively. Both nomograms were internally and externally validated by calibration, concordance index (C-index), receiver operating characteristic curve, and decision curve analyses (DCA).

RESULTS

A total of 307 patients with CHB related cirrhosis were recruited. The independent risk factors for EV included Child-Pugh class [odds ratio (OR) = 7.705, 95% confidence interval (CI) = 2.169-27.370, = 0.002], platelet count (OR = 0.992, 95%CI = 0.984-1.000, = 0.044), splenic portal index (SPI) (OR = 3.895, 95%CI = 1.630-9.308, = 0.002), and liver fibrosis index (LFI) (OR = 3.603, 95%CI = 1.336-9.719, = 0.011); those of EV severity included Child-Pugh class (OR = 5.436, 95%CI = 2.112-13.990, < 0.001), mean portal vein velocity (OR = 1.479, 95%CI = 1.043-2.098, = 0.028), portal vein diameter (OR = 1.397, 95%CI = 1.021-1.912, = 0.037), SPI (OR = 1.463, 95%CI = 1.030-2.079, = 0.034), and LFI (OR = 3.089, 95%CI = 1.442-6.617, = 0.004). Two nomograms (predicting EV risk and severity, respectively) were well-calibrated and had a favorable discriminative ability, with C-indexes of 0.916 and 0.846 in the training cohort, respectively, higher than those of other predictive indexes, like LFI (C-indexes = 0.781 and 0.738), SPI (C-indexes = 0.805 and 0.714), ratio of platelet count to spleen diameter (PSR) (C-indexes = 0.822 and 0.726), King's score (C-indexes = 0.694 and 0.609), and Lok index (C-indexes = 0.788 and 0.700). The areas under the curves (AUCs) of the two nomograms were 0.916 and 0.846 in the training cohort, respectively, higher than those of LFI (AUCs = 0.781 and 0.738), SPI (AUCs = 0.805 and 0.714), PSR (AUCs = 0.822 and 0.726), King's score (AUCs = 0.694 and 0.609), and Lok index (AUCs = 0.788 and 0.700). Better net benefits were shown in the DCA. The results were validated in the validation cohort.

CONCLUSION

Nomograms incorporating clinical and ultrasonic variables are efficient in noninvasively predicting the risk and severity of EV.

摘要

背景

食管静脉曲张(EV)是慢性乙型肝炎(CHB)相关肝硬化最致命的并发症。预后较差,尤其是首次上消化道出血后。

目的

构建列线图以预测CHB相关肝硬化患者发生EV的风险及严重程度。

方法

2016年至2018年,温州医科大学附属第一医院招募CHB相关肝硬化患者并分为训练队列或验证队列。通过单因素和多因素逻辑回归分析筛选出与EV风险及严重程度密切相关的临床和超声参数,并分别纳入两个列线图。两个列线图均通过校准、一致性指数(C指数)、受试者工作特征曲线和决策曲线分析(DCA)进行内部和外部验证。

结果

共招募307例CHB相关肝硬化患者。EV的独立危险因素包括Child-Pugh分级[比值比(OR)=7.705,95%置信区间(CI)=2.169 - 27.370,P = 0.002]、血小板计数(OR = 0.992,95%CI = 0.984 - 1.000,P = 0.044)、脾门静脉指数(SPI)(OR = 3.895,95%CI = 1.630 - 9.308,P = 0.002)和肝纤维化指数(LFI)(OR = 3.603,95%CI = 1.336 - 9.719,P = 0.011);EV严重程度的独立危险因素包括Child-Pugh分级(OR = 5.436,95%CI = 2.112 - 13.990,P < 0.001)、门静脉平均流速(OR = 1.479,95%CI = 1.043 - 2.098,P = 0.028)、门静脉直径(OR = 1.397,95%CI = 1.021 - 1.912,P = 0.037)、SPI(OR = 1.463,95%CI = 1.030 - 2.079,P = 0.034)和LFI(OR = 3.089,95%CI = 1.442 - 6.617,P = 0.004)。两个列线图(分别预测EV风险和严重程度)校准良好且具有良好的判别能力,训练队列中的C指数分别为0.916和0.846,高于其他预测指标,如LFI(C指数=0.781和0.738)、SPI(C指数=0.805和0.714)、血小板计数与脾直径比值(PSR)(C指数=0.822和0.726)、King评分(C指数=0.694和0.609)以及Lok指数(C指数=0.788和0.700)。两个列线图在训练队列中的曲线下面积(AUC)分别为0.916和0.846,高于LFI(AUC = 0.781和0.738)、SPI(AUC = 0.805和0.714)、PSR(AUC = 0.822和0.726)、King评分(AUC = 0.694和0.609)以及Lok指数(AUC = 0.788和0.700)。DCA显示出更好的净效益。结果在验证队列中得到验证。

结论

纳入临床和超声变量的列线图可有效无创地预测EV的风险及严重程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c20/7723663/176288a7724a/WJG-26-7204-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验