Bridges Thomas J, Kostianko Anna, Schneider Guido
Department of Mathematics, University of Surrey, Guildford, Surrey GU2 7XH, UK.
School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, People's Republic of China.
Proc Math Phys Eng Sci. 2020 Nov;476(2243):20200203. doi: 10.1098/rspa.2020.0203. Epub 2020 Nov 4.
It is proved that approximations which are obtained as solutions of the multiphase Whitham modulation equations stay close to solutions of the original equation on a natural time scale. The class of nonlinear wave equations chosen for the starting point is coupled nonlinear Schrödinger equations. These equations are not in general integrable, but they have an explicit family of multiphase wavetrains that generate multiphase Whitham equations, which may be elliptic, hyperbolic, or of mixed type. Due to the change of type, the function space set-up is based on Gevrey spaces with initial data analytic in a strip in the complex plane. In these spaces a Cauchy-Kowalevskaya-like existence and uniqueness theorem is proved. Building on this theorem and higher-order approximations to Whitham theory, a rigorous comparison of solutions, of the coupled nonlinear Schrödinger equations and the multiphase Whitham modulation equations, is obtained.
事实证明,作为多相惠特姆调制方程解所得到的近似解,在自然时间尺度上与原方程的解保持接近。选择作为起点的非线性波动方程类是耦合非线性薛定谔方程。这些方程一般不可积,但它们有一族明确的多相波列,这些波列产生多相惠特姆方程,这些方程可能是椭圆型、双曲型或混合型的。由于类型的变化,函数空间的设置基于在复平面的一个带形区域内解析的初始数据的热夫雷空间。在这些空间中证明了一个类似柯西 - 柯瓦列夫斯卡娅的存在性和唯一性定理。基于这个定理以及对惠特姆理论的高阶近似,得到了耦合非线性薛定谔方程和多相惠特姆调制方程解的严格比较。