Himmelberg Marc M, Segala Federico G, Maloney Ryan T, Harris Julie M, Wade Alex R
Department of Psychology, University of York, York, United Kingdom.
Department of Psychology, New York University, New York, NY, United States.
Front Neurosci. 2020 Dec 10;14:581706. doi: 10.3389/fnins.2020.581706. eCollection 2020.
Two stereoscopic cues that underlie the perception of motion-in-depth (MID) are changes in retinal disparity over time (CD) and interocular velocity differences (IOVD). These cues have independent spatiotemporal sensitivity profiles, depend upon different low-level stimulus properties, and are potentially processed along separate cortical pathways. Here, we ask whether these MID cues code for different motion directions: do they give rise to discriminable patterns of neural signals, and is there evidence for their convergence onto a single "motion-in-depth" pathway? To answer this, we use a decoding algorithm to test whether, and when, patterns of electroencephalogram (EEG) signals measured from across the full scalp, generated in response to CD- and IOVD-isolating stimuli moving toward or away in depth can be distinguished. We find that both MID cue type and 3D-motion direction can be decoded at different points in the EEG timecourse and that direction decoding cannot be accounted for by static disparity information. Remarkably, we find evidence for late processing convergence: IOVD motion direction can be decoded relatively late in the timecourse based on a decoder trained on CD stimuli, and vice versa. We conclude that early CD and IOVD direction decoding performance is dependent upon fundamentally different low-level stimulus features, but that later stages of decoding performance may be driven by a central, shared pathway that is agnostic to these features. Overall, these data are the first to show that neural responses to CD and IOVD cues that move toward and away in depth can be decoded from EEG signals, and that different aspects of MID-cues contribute to decoding performance at different points along the EEG timecourse.
构成深度运动感知(MID)基础的两个立体视觉线索是视网膜视差随时间的变化(CD)和双眼速度差异(IOVD)。这些线索具有独立的时空敏感性分布,依赖于不同的低层次刺激特性,并且可能沿着不同的皮质通路进行处理。在这里,我们要问这些MID线索是否编码不同的运动方向:它们是否会产生可区分的神经信号模式,以及是否有证据表明它们会聚到单一的“深度运动”通路上?为了回答这个问题,我们使用一种解码算法来测试,从整个头皮测量的脑电图(EEG)信号模式,在响应深度上朝向或远离的CD和IOVD分离刺激时产生的,是否以及何时可以被区分。我们发现,MID线索类型和三维运动方向都可以在EEG时间进程的不同点进行解码,并且方向解码不能由静态视差信息来解释。值得注意的是,我们发现了后期处理会聚的证据:基于在CD刺激上训练的解码器,IOVD运动方向可以在时间进程中相对较晚的时候被解码,反之亦然。我们得出结论,早期的CD和IOVD方向解码性能依赖于根本不同的低层次刺激特征,但后期的解码性能阶段可能由一个对这些特征不敏感的中央共享通路驱动。总体而言,这些数据首次表明,对深度上朝向和远离的CD和IOVD线索的神经反应可以从EEG信号中解码出来,并且MID线索的不同方面在EEG时间进程的不同点对解码性能有贡献。