Suppr超能文献

从诱发反应中解码动态脑模式:应用于时间序列神经成像数据的多变量模式分析教程

Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data.

作者信息

Grootswagers Tijl, Wardle Susan G, Carlson Thomas A

机构信息

Macquarie University, Sydney, Australia.

ARC Centre of Excellence in Cognition and its Disorders.

出版信息

J Cogn Neurosci. 2017 Apr;29(4):677-697. doi: 10.1162/jocn_a_01068. Epub 2016 Oct 25.

Abstract

Multivariate pattern analysis (MVPA) or brain decoding methods have become standard practice in analyzing fMRI data. Although decoding methods have been extensively applied in brain-computer interfaces, these methods have only recently been applied to time series neuroimaging data such as MEG and EEG to address experimental questions in cognitive neuroscience. In a tutorial style review, we describe a broad set of options to inform future time series decoding studies from a cognitive neuroscience perspective. Using example MEG data, we illustrate the effects that different options in the decoding analysis pipeline can have on experimental results where the aim is to "decode" different perceptual stimuli or cognitive states over time from dynamic brain activation patterns. We show that decisions made at both preprocessing (e.g., dimensionality reduction, subsampling, trial averaging) and decoding (e.g., classifier selection, cross-validation design) stages of the analysis can significantly affect the results. In addition to standard decoding, we describe extensions to MVPA for time-varying neuroimaging data including representational similarity analysis, temporal generalization, and the interpretation of classifier weight maps. Finally, we outline important caveats in the design and interpretation of time series decoding experiments.

摘要

多变量模式分析(MVPA)或脑解码方法已成为分析功能磁共振成像(fMRI)数据的标准做法。尽管解码方法已在脑机接口中得到广泛应用,但这些方法直到最近才被应用于诸如脑磁图(MEG)和脑电图(EEG)等时间序列神经成像数据,以解决认知神经科学中的实验问题。在一篇教程式综述中,我们从认知神经科学的角度描述了一系列广泛的选项,为未来的时间序列解码研究提供参考。我们使用示例MEG数据,说明了解码分析流程中不同选项对实验结果的影响,这些实验旨在从动态脑激活模式中“解码”随时间变化的不同感知刺激或认知状态。我们表明,在分析的预处理(例如,降维、子采样、试次平均)和解码(例如,分类器选择、交叉验证设计)阶段所做的决策会显著影响结果。除了标准解码,我们还描述了针对时变神经成像数据的MVPA扩展,包括表征相似性分析、时间泛化以及分类器权重图的解释。最后,我们概述了时间序列解码实验设计与解释中的重要注意事项。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验