Suppr超能文献

用于最大化糖肽鉴定和可靠定量的半自动糖蛋白质组学数据分析工作流程。

Semiautomated glycoproteomics data analysis workflow for maximized glycopeptide identification and reliable quantification.

作者信息

Lippold Steffen, de Ru Arnoud H, Nouta Jan, van Veelen Peter A, Palmblad Magnus, Wuhrer Manfred, de Haan Noortje

机构信息

Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands.

出版信息

Beilstein J Org Chem. 2020 Dec 11;16:3038-3051. doi: 10.3762/bjoc.16.253. eCollection 2020.

Abstract

Glycoproteomic data are often very complex, reflecting the high structural diversity of peptide and glycan portions. The use of glycopeptide-centered glycoproteomics by mass spectrometry is rapidly evolving in many research areas, leading to a demand in reliable data analysis tools. In recent years, several bioinformatic tools were developed to facilitate and improve both the identification and quantification of glycopeptides. Here, a selection of these tools was combined and evaluated with the aim of establishing a robust glycopeptide detection and quantification workflow targeting enriched glycoproteins. For this purpose, a tryptic digest from affinity-purified immunoglobulins G and A was analyzed on a nano-reversed-phase liquid chromatography-tandem mass spectrometry platform with a high-resolution mass analyzer and higher-energy collisional dissociation fragmentation. Initial glycopeptide identification based on MS/MS data was aided by the Byonic software. Additional MS1-based glycopeptide identification relying on accurate mass and retention time differences using GlycopeptideGraphMS considerably expanded the set of confidently annotated glycopeptides. For glycopeptide quantification, the performance of LaCyTools was compared to Skyline, and GlycopeptideGraphMS. All quantification packages resulted in comparable glycosylation profiles but featured differences in terms of robustness and data quality control. Partial cysteine oxidation was identified as an unexpectedly abundant peptide modification and impaired the automated processing of several IgA glycopeptides. Finally, this study presents a semiautomated workflow for reliable glycoproteomic data analysis by the combination of software packages for MS/MS- and MS1-based glycopeptide identification as well as the integration of analyte quality control and quantification.

摘要

糖蛋白质组学数据通常非常复杂,反映了肽段和聚糖部分的高度结构多样性。基于质谱的以糖肽为中心的糖蛋白质组学在许多研究领域中迅速发展,从而对可靠的数据分析工具产生了需求。近年来,开发了几种生物信息学工具来促进和改进糖肽的鉴定和定量。在此,将这些工具中的一部分进行组合和评估,目的是建立一个针对富集糖蛋白的强大的糖肽检测和定量工作流程。为此,在配备高分辨率质量分析仪和高能碰撞解离碎裂功能的纳升反相液相色谱 - 串联质谱平台上,分析了亲和纯化的免疫球蛋白G和A的胰蛋白酶消化产物。基于MS/MS数据的初始糖肽鉴定借助Byonic软件得以实现。使用GlycopeptideGraphMS基于精确质量和保留时间差异进行的基于MS1的额外糖肽鉴定,大大扩展了可靠注释的糖肽集。对于糖肽定量,将LaCyTools的性能与Skyline和GlycopeptideGraphMS进行了比较。所有定量软件包都产生了可比的糖基化图谱,但在稳健性和数据质量控制方面存在差异。部分半胱氨酸氧化被鉴定为一种出人意料的丰富肽修饰,并影响了几种IgA糖肽的自动化处理。最后,本研究通过结合用于基于MS/MS和MS1的糖肽鉴定的软件包以及整合分析物质量控制和定量,提出了一种用于可靠糖蛋白质组学数据分析的半自动工作流程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/630b/7736696/9b50a99f2378/Beilstein_J_Org_Chem-16-3038-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验