Suppr超能文献

微生物组测量:微生物组学方法开发与基准测试的最佳实践

Measuring the microbiome: Best practices for developing and benchmarking microbiomics methods.

作者信息

Bokulich Nicholas A, Ziemski Michal, Robeson Michael S, Kaehler Benjamin D

机构信息

Laboratory of Food Systems Biotechnology, Institute of Food, Nutrition, and Health, ETH Zurich, Switzerland.

University of Arkansas for Medical Sciences, Department of Biomedical Informatics, Little Rock, AR, USA.

出版信息

Comput Struct Biotechnol J. 2020 Dec 3;18:4048-4062. doi: 10.1016/j.csbj.2020.11.049. eCollection 2020.

Abstract

Microbiomes are integral components of diverse ecosystems, and increasingly recognized for their roles in the health of humans, animals, plants, and other hosts. Given their complexity (both in composition and function), the effective study of microbiomes (microbiomics) relies on the development, optimization, and validation of computational methods for analyzing microbial datasets, such as from marker-gene (e.g., 16S rRNA gene) and metagenome data. This review describes best practices for benchmarking and implementing computational methods (and software) for studying microbiomes, with particular focus on unique characteristics of microbiomes and microbiomics data that should be taken into account when designing and testing microbiomics methods.

摘要

微生物群落是多样生态系统的重要组成部分,并且因其在人类、动物、植物及其他宿主健康方面的作用而日益受到认可。鉴于其复杂性(包括组成和功能方面),对微生物群落的有效研究(微生物组学)依赖于用于分析微生物数据集(例如来自标记基因,如16S rRNA基因和宏基因组数据)的计算方法的开发、优化和验证。本综述描述了用于研究微生物群落的计算方法(及软件)的基准测试和实施的最佳实践,特别关注在设计和测试微生物组学方法时应考虑的微生物群落和微生物组学数据的独特特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0baf/7744638/ec5434e23079/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验