Suppr超能文献

基于关联维数距离度量方法和改进Adaboost分类的酒精性脑电图信号分类

Alcoholic EEG signal classification with Correlation Dimension based distance metrics approach and Modified Adaboost classification.

作者信息

Prabhakar Sunil Kumar, Rajaguru Harikumar

机构信息

Department of Brain and Cognitive Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 02841, South Korea.

Department of ECE, Bannari Amman Institute of Technology, Sathyamangalam, 638402, India.

出版信息

Heliyon. 2020 Dec 16;6(12):e05689. doi: 10.1016/j.heliyon.2020.e05689. eCollection 2020 Dec.

Abstract

The basic function of the brain is severely affected by alcoholism. For the easy depiction and assessment of the mental condition of a human brain, Electroencephalography (EEG) signals are highly useful as it can record and measure the electrical activities of the brain much to the satisfaction of doctors and researchers. Utilizing the standard conventional techniques is quite hectic to derive the useful information as these signals are highly non-linear and non-stationary in nature. While recording the EEG signals, the activities of the neurons are recorded from various scalp regions which has varied characteristics and has a very low magnitude. Therefore, human interpretation of such signals is very difficult and consumes a lot of time. Hence, with the advent of Computer Aided Diagnosis (CAD) Techniques, identifying the normal versus alcoholic EEG signals has been of great utility in the medical field. In this work, we perform the initial clustering of the alcoholic EEG signals by means of using Correlation Dimension (CD) for easy feature extraction and then the suitable features are selected in it by means of employing various distance metrics like correlation distance, city block distance, cosine distance and chebyshev distance. Proceeding in such a methodology aids and assures that a good discrimination could be achieved between normal and alcoholic EEG signals using non-linear features. Finally, classification is then carried out with the suitable classifiers chosen such as Adaboost.RT classifier, the proposed Modified Adaboost.RT classifier by means of introducing Ridge and Lasso based soft thresholding technique, Random Forest with bootstrap resampling technique, Artificial Neural Networks (ANN) such as Radial Basis Functions (RBF) and Multi-Layer Perceptron (MLP), Support Vector Machine (SVM) with Linear, Polynomial and RBF Kernel, Naïve Bayesian Classifier (NBC), K-means classifier, and K Nearest Neighbor (KNN) Classifier and the results are analyzed. Results report a comparatively high classification accuracy of about 98.99% when correlation distance metrics are utilized with CD and the proposed Modified Adaboost.RT classifier using Ridge based soft thresholding technique.

摘要

酗酒会严重影响大脑的基本功能。为了便于描述和评估人脑的精神状态,脑电图(EEG)信号非常有用,因为它可以记录和测量大脑的电活动,这让医生和研究人员十分满意。由于这些信号本质上具有高度的非线性和非平稳性,利用标准的传统技术来提取有用信息相当繁琐。在记录EEG信号时,神经元的活动是从具有不同特征且幅度非常低的各个头皮区域记录的。因此,人类对这类信号的解读非常困难且耗时。因此,随着计算机辅助诊断(CAD)技术的出现,识别正常EEG信号与酗酒者的EEG信号在医学领域具有很大的实用价值。在这项工作中,我们通过使用关联维数(CD)对酗酒者的EEG信号进行初始聚类,以便于特征提取,然后通过采用各种距离度量,如相关距离、街区距离、余弦距离和切比雪夫距离,从中选择合适的特征。采用这种方法有助于并确保使用非线性特征能够在正常EEG信号和酗酒者的EEG信号之间实现良好的区分。最后,使用选定的合适分类器进行分类,如Adaboost.RT分类器、通过引入基于岭回归和套索回归的软阈值技术提出的改进型Adaboost.RT分类器、具有自助重采样技术的随机森林、人工神经网络(ANN),如径向基函数(RBF)和多层感知器(MLP)、具有线性、多项式和RBF核的支持向量机(SVM)、朴素贝叶斯分类器(NBC)、K均值分类器和K最近邻(KNN)分类器,并对结果进行分析。结果表明,当使用相关距离度量结合CD以及采用基于岭回归软阈值技术的改进型Adaboost.RT分类器时,分类准确率相对较高,约为98.99%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0812/7750377/7cd4d5ddcefa/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验