Suppr超能文献

基于深度时空卷积双向长短期记忆网络利用脑电图信号的嗜睡程度分类

Classification of Drowsiness Levels Based on a Deep Spatio-Temporal Convolutional Bidirectional LSTM Network Using Electroencephalography Signals.

作者信息

Jeong Ji-Hoon, Yu Baek-Woon, Lee Dae-Hyeok, Lee Seong-Whan

机构信息

Department of Brain and Cognitive Engineering, Korea University, Anam-dong, Seongbuk-ku, Seoul 02841, Korea.

Department of Artificial Intelligence, Korea University, Anam-dong, Seongbuk-ku, Seoul 02841, Korea.

出版信息

Brain Sci. 2019 Nov 29;9(12):348. doi: 10.3390/brainsci9120348.

Abstract

Non-invasive brain-computer interfaces (BCI) have been developed for recognizing human mental states with high accuracy and for decoding various types of mental conditions. In particular, accurately decoding a pilot's mental state is a critical issue as more than 70% of aviation accidents are caused by human factors, such as fatigue or drowsiness. In this study, we report the classification of not only two mental states (i.e., alert and drowsy states) but also five drowsiness levels from electroencephalogram (EEG) signals. To the best of our knowledge, this approach is the first to classify drowsiness levels in detail using only EEG signals. We acquired EEG data from ten pilots in a simulated night flight environment. For accurate detection, we proposed a deep spatio-temporal convolutional bidirectional long short-term memory network (DSTCLN) model. We evaluated the classification performance using Karolinska sleepiness scale (KSS) values for two mental states and five drowsiness levels. The grand-averaged classification accuracies were 0.87 (±0.01) and 0.69 (±0.02), respectively. Hence, we demonstrated the feasibility of classifying five drowsiness levels with high accuracy using deep learning.

摘要

非侵入性脑机接口(BCI)已被开发用于高精度识别人类心理状态以及解码各种类型的心理状况。特别是,准确解码飞行员的心理状态是一个关键问题,因为超过70%的航空事故是由人为因素造成的,如疲劳或困倦。在本研究中,我们报告了不仅从脑电图(EEG)信号中对两种心理状态(即警觉和困倦状态)进行分类,还对五种困倦程度进行分类。据我们所知,这种方法是首次仅使用EEG信号详细分类困倦程度。我们在模拟夜间飞行环境中从十名飞行员那里获取了EEG数据。为了进行准确检测,我们提出了一种深度时空卷积双向长短期记忆网络(DSTCLN)模型。我们使用卡罗林斯卡嗜睡量表(KSS)值对两种心理状态和五种困倦程度的分类性能进行了评估。总体平均分类准确率分别为0.87(±0.01)和0.69(±0.02)。因此,我们证明了使用深度学习高精度分类五种困倦程度的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de19/6956039/04c9aa462b6a/brainsci-09-00348-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验