Suppr超能文献

基于元启发式算法的 LASSO 回归与增强型人工神经网络分类算法的酒精性脑电信号检测。

Detection of Alcoholic EEG signal using LASSO regression with metaheuristics algorithms based LSTM and enhanced artificial neural network classification algorithms.

机构信息

Malnad College of Engineering, Hassan, Karnataka, India.

Bannari Amman Institute of Technology, Sathyamangalam, Tamilnadu, India.

出版信息

Sci Rep. 2024 Sep 13;14(1):21437. doi: 10.1038/s41598-024-72926-7.

Abstract

The world has a higher count of death rates as a result of Alcohol consumption. Identification is possible because Alcoholic EEG waves have a certain behavior that is totally different compared to the non-alcoholic individual. The available approaches take longer to provide the feedback because they analyze the data manually. For this reason, in the present paper we propose a novel approach applied to detect alcoholic EEG signals automatically by using deep learning methods. Our strategy has advantages as far as fast detection is concerned; hence people can help immediately when there is a need. The potential for a significant decrease in deaths from alcohol poisoning and improvement to public health is presented by this advancement. In order to create clusters and classify the alcoholic EEG signals, this research uses a cascaded process. To begin with, an initial clustering and feature extraction is done by LASSO regression. After that, a variety of meta-heuristics algorithms like Particle Swarm Optimization (PSO), Binary Coding Harmony Search (BCHS) as well as Binary Dragonfly Algorithm (BDA) are employed for feature minimization. When this method is used, normal and alcoholic EEG signals may be differentiated using non-linear features. PSO, BCHS, and BDA features allow for estimation of statistical parameters through t-test, Friedman statistic test, Mann-Whitney U test, and Z-Score with corresponding p-values for alcoholic EEG signals. Lastly, classification is done by the use of support vector machines (SVM) (including linear, polynomial, and Gaussian kernels), random forests, artificial neural networks (ANN), enhanced artificial neural networks (EANN), and LSTM models. Results showed that LASSO regression with BDA-based EANN proposed classifier have a classification accuracy of 99.59%, indicating that our method is highly accurate at classifying alcoholic EEG signals.

摘要

由于饮酒,世界上的死亡率更高。可以进行识别,因为酒精性脑电图波具有与非酒精个体完全不同的特定行为。现有的方法需要更长的时间来提供反馈,因为它们是手动分析数据的。出于这个原因,在本文中,我们提出了一种新的方法,通过使用深度学习方法自动检测酒精性 EEG 信号。我们的策略在快速检测方面具有优势;因此,当有需要时,人们可以立即提供帮助。通过这一进步,有望显著降低因酒精中毒导致的死亡人数,并改善公众健康状况。为了创建集群并对酒精性 EEG 信号进行分类,本研究使用级联过程。首先,通过 LASSO 回归进行初始聚类和特征提取。之后,采用各种元启发式算法,如粒子群优化算法 (PSO)、二进制编码和声搜索算法 (BCHS) 和二进制蜻蜓算法 (BDA) 来进行特征最小化。当使用这种方法时,可以使用非线性特征来区分正常和酒精性 EEG 信号。PSO、BCHS 和 BDA 特征允许通过 t 检验、Friedman 统计检验、Mann-Whitney U 检验和 Z 分数以及相应的 p 值来估计统计参数,用于酒精性 EEG 信号。最后,通过支持向量机 (SVM)(包括线性、多项式和高斯核)、随机森林、人工神经网络 (ANN)、增强型人工神经网络 (EANN) 和 LSTM 模型进行分类。结果表明,基于 LASSO 回归和 BDA 的 EANN 提出的分类器具有 99.59%的分类准确率,表明我们的方法在分类酒精性 EEG 信号方面非常准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f83f/11399445/cfd8989578cc/41598_2024_72926_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验