Suppr超能文献

用于使用组结构对多效性效应进行跨癌症基因组研究的贝叶斯荟萃分析模型。

Bayesian meta-analysis models for cross cancer genomic investigation of pleiotropic effects using group structure.

作者信息

Baghfalaki Taban, Sugier Pierre-Emmanuel, Truong Therese, Pettitt Anthony N, Mengersen Kerrie, Liquet Benoit

机构信息

Department of Statistics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran.

School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.

出版信息

Stat Med. 2021 Mar 15;40(6):1498-1518. doi: 10.1002/sim.8855. Epub 2020 Dec 27.

Abstract

An increasing number of genome-wide association studies (GWAS) summary statistics is made available to the scientific community. Exploiting these results from multiple phenotypes would permit identification of novel pleiotropic associations. In addition, incorporating prior biological information in GWAS such as group structure information (gene or pathway) has shown some success in classical GWAS approaches. However, this has not been widely explored in the context of pleiotropy. We propose a Bayesian meta-analysis approach (termed GCPBayes) that uses summary-level GWAS data across multiple phenotypes to detect pleiotropy at both group-level (gene or pathway) and within group (eg, at the SNP level). We consider both continuous and Dirac spike and slab priors for group selection. We also use a Bayesian sparse group selection approach with hierarchical spike and slab priors that enables us to select important variables both at the group level and within group. GCPBayes uses a Bayesian statistical framework based on Markov chain Monte Carlo (MCMC) Gibbs sampling. It can be applied to multiple types of phenotypes for studies with overlapping or nonoverlapping subjects, and takes into account heterogeneity in the effect size and allows for the opposite direction of the genetic effects across traits. Simulations show that the proposed methods outperform benchmark approaches such as ASSET and CPBayes in the ability to retrieve pleiotropic associations at both SNP and gene-levels. To illustrate the GCPBayes method, we investigate the shared genetic effects between thyroid cancer and breast cancer in candidate pathways.

摘要

越来越多的全基因组关联研究(GWAS)汇总统计数据被提供给科学界。利用来自多种表型的这些结果将有助于识别新的多效性关联。此外,在GWAS中纳入先验生物学信息,如组结构信息(基因或通路),在经典GWAS方法中已取得了一些成功。然而,在多效性背景下,这一点尚未得到广泛探索。我们提出了一种贝叶斯荟萃分析方法(称为GCPBayes),该方法使用跨多种表型的汇总水平GWAS数据,在组水平(基因或通路)和组内(例如,在SNP水平)检测多效性。我们考虑了用于组选择的连续和狄拉克尖峰和平板先验。我们还使用了具有分层尖峰和平板先验的贝叶斯稀疏组选择方法,使我们能够在组水平和组内选择重要变量。GCPBayes使用基于马尔可夫链蒙特卡罗(MCMC)吉布斯采样的贝叶斯统计框架。它可应用于具有重叠或非重叠受试者的多种类型表型的研究,并考虑效应大小的异质性,允许跨性状的遗传效应方向相反。模拟表明,所提出的方法在检索SNP和基因水平的多效性关联能力方面优于基准方法,如ASSET和CPBayes。为了说明GCPBayes方法,我们在候选通路中研究了甲状腺癌和乳腺癌之间的共享遗传效应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验