Suppr超能文献

用于长寿命电荷的金属有机框架修饰氧化亚铜纳米线在选择性光催化CO还原为CH中的应用

Metal-Organic Framework Decorated Cuprous Oxide Nanowires for Long-lived Charges Applied in Selective Photocatalytic CO Reduction to CH.

作者信息

Wu Hao, Kong Xin Ying, Wen Xiaoming, Chai Siang-Piao, Lovell Emma C, Tang Junwang, Ng Yun Hau

机构信息

School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.

Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.

出版信息

Angew Chem Int Ed Engl. 2021 Apr 6;60(15):8455-8459. doi: 10.1002/anie.202015735. Epub 2021 Mar 3.

Abstract

Improving the stability of cuprous oxide (Cu O) is imperative to its practical applications in artificial photosynthesis. In this work, Cu O nanowires are encapsulated by metal-organic frameworks (MOFs) of Cu (BTC) (BTC=1,3,5-benzene tricarboxylate) using a surfactant-free method. Such MOFs not only suppress the water vapor-induced corrosion of Cu O but also facilitate charge separation and CO uptake, thus resulting in a nanocomposite representing 1.9 times improved activity and stability for selective photocatalytic CO reduction into CH under mild reaction conditions. Furthermore, direct transfer of photogenerated electrons from the conduction band of Cu O to the LUMO level of non-excited Cu (BTC) has been evidenced by time-resolved photoluminescence. This work proposes an effective strategy for CO conversion by a synergy of charge separation and CO adsorption, leading to the enhanced photocatalytic reaction when MOFs are integrated with metal oxide photocatalyst.

摘要

提高氧化亚铜(Cu₂O)的稳定性对其在人工光合作用中的实际应用至关重要。在这项工作中,采用无表面活性剂的方法,用Cu₃(BTC)(BTC = 1,3,5 - 苯三甲酸)的金属有机框架(MOF)包裹Cu₂O纳米线。这种MOF不仅抑制了水蒸气引起的Cu₂O腐蚀,还促进了电荷分离和CO₂的吸收,从而得到一种纳米复合材料,在温和反应条件下,其选择性光催化将CO₂还原为CH₄的活性和稳定性提高了1.9倍。此外,时间分辨光致发光证明了光生电子从Cu₂O的导带直接转移到未激发的Cu₃(BTC)的最低未占分子轨道(LUMO)能级。这项工作提出了一种通过电荷分离和CO₂吸附协同作用进行CO₂转化的有效策略,当MOF与金属氧化物光催化剂结合时,可增强光催化反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验