Suppr超能文献

利用束缚双层脂质膜监测金纳米颗粒与脂质膜间的热量传递。

Tethered Bilayer Lipid Membranes to Monitor Heat Transfer between Gold Nanoparticles and Lipid Membranes.

机构信息

School of Life Sciences, University of Technology Sydney; ARC Research Hub for Integrated Devices for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney.

School of Life Sciences, University of Technology Sydney.

出版信息

J Vis Exp. 2020 Dec 8(166). doi: 10.3791/61851.

Abstract

Here we report a protocol to investigate the heat transfer between irradiated gold nanoparticles (GNPs) and bilayer lipid membranes by electrochemistry using tethered bilayer lipid membranes (tBLMs) assembled on gold electrodes. Irradiated modified GNPs, such as streptavidin-conjugated GNPs, are embedded in tBLMs containing target molecules, such as biotin. By using this approach, the heat transfer processes between irradiated GNPs and model bilayer lipid membrane with entities of interest are mediated by a horizontally focused laser beam. The thermal predictive computational model is used to confirm the electrochemically induced conductance changes in the tBLMs. Under the specific conditions used, detecting heat pulses required specific attachment of the gold nanoparticles to the membrane surface, while unbound gold nanoparticles failed to elicit a measurable response. This technique serves as a powerful detection biosensor which can be directly utilized for the design and development of strategies for thermal therapies that permits optimization of the laser parameters, particle size, particle coatings and composition.

摘要

我们在此报告一种通过电化学方法使用在金电极上组装的束缚双层脂膜(tBLM)研究辐照金纳米粒子(GNPs)与双层脂膜之间传热的方案。辐照修饰的 GNPs,如链霉亲和素偶联的 GNPs,嵌入含有靶分子(如生物素)的 tBLM 中。通过这种方法,水平聚焦激光束介导了辐照 GNPs 与具有感兴趣实体的模型双层脂膜之间的传热过程。使用热预测计算模型来确认 tBLM 中的电化学诱导电导变化。在所使用的特定条件下,检测热脉冲需要将金纳米粒子特异性地附着到膜表面,而未结合的金纳米粒子未能引起可测量的响应。该技术可用作强大的检测生物传感器,可直接用于设计和开发允许优化激光参数、颗粒尺寸、颗粒涂层和组成的热疗策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验