Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
J Physiol. 2021 Mar;599(5):1611-1630. doi: 10.1113/JP280233. Epub 2021 Jan 13.
Cartwheel neurons provide potent inhibition to fusiform neurons in the dorsal cochlear nucleus (DCN). Most cartwheel neurons fire action potentials spontaneously, but the ion channels responsible for this intrinsic activity are unknown. We investigated the ion channels responsible for the intrinsic firing of cartwheel neurons and the stable resting membrane potential found in a fraction of these neurons (quiet neurons). Among the ion channels controlling membrane potential of cartwheel neurons, the presence of open ATP-sensitive potassium channels (K ) is responsible for the existence of quiet neurons. Our results pinpoint K channel modulation as a critical factor controlling the firing of cartwheel neurons. Hence, it is a crucial channel influencing the balance of excitation and inhibition in the DCN.
Cartwheel neurons from the dorsal cochlear nucleus (DCN) are glycinergic interneurons and the primary source of inhibition on the fusiform neurons, the DCN's principal excitatory neuron. Most cartwheel neurons present spontaneous firing (active neurons), producing a steady inhibitory tone on fusiform neurons. In contrast, a small fraction of these neurons do not fire spontaneously (quiet neurons). Hyperactivity of fusiform neurons is seen in animals with behavioural evidence of tinnitus. Because of its relevance in controlling the excitability of fusiform neurons, we investigated the ion channels responsible for the spontaneous firing of cartwheel neurons in DCN slices from rats. We found that quiet neurons presented an outward conductance not seen in active neurons, which generates a stable resting potential. This current was sensitive to tolbutamide, an ATP-sensitive potassium channel (K ) antagonist. After inhibition with tolbutamide, quiet neurons start to fire spontaneously, while the active neurons were not affected. On the other hand, in active neurons, K agonist diazoxide activated a conductance similar to quiet neurons' K conductance and stopped spontaneous firing. According to the effect of K channels on cartwheel neuron firing, glycinergic neurotransmission in DCN was increased by tolbutamide and decreased by diazoxide. Our results reveal a role of K channels in controlling the spontaneous firing of neurons not involved in fuel homeostasis.
轮形神经元向耳蜗背核(DCN)中的梭形神经元提供强大的抑制作用。大多数轮形神经元自发地发射动作电位,但负责这种内在活动的离子通道尚不清楚。我们研究了负责轮形神经元内在放电和这些神经元中一部分(安静神经元)稳定静息膜电位的离子通道。在控制轮形神经元膜电位的离子通道中,开放的三磷酸腺苷敏感性钾通道(K )的存在是安静神经元存在的原因。我们的结果指出 K 通道调节作为控制轮形神经元放电的关键因素。因此,它是影响 DCN 中兴奋和抑制平衡的关键通道。
来自耳蜗背核(DCN)的轮形神经元是甘氨酸能中间神经元,是 DCN 的主要兴奋性神经元梭形神经元的主要抑制源。大多数轮形神经元呈现自发放电(活性神经元),对梭形神经元产生稳定的抑制性音调。相比之下,这些神经元的一小部分不自发放电(安静神经元)。在有耳鸣行为证据的动物中,梭形神经元的过度活跃。由于其对控制梭形神经元兴奋性的相关性,我们研究了来自大鼠 DCN 切片的轮形神经元自发放电的离子通道。我们发现,安静神经元呈现出在活性神经元中未见的外向电导,这产生了稳定的静息电位。这种电流对甲苯磺丁脲(一种三磷酸腺苷敏感性钾通道(K )拮抗剂)敏感。在用甲苯磺丁脲抑制后,安静神经元开始自发放电,而活性神经元不受影响。另一方面,在活性神经元中,K 激动剂二氮嗪激活了类似于安静神经元 K 电导的电导,并停止了自发放电。根据 K 通道对轮形神经元放电的影响,DCN 中的甘氨酸能神经传递被甲苯磺丁脲增加,被二氮嗪减少。我们的结果揭示了 K 通道在控制不参与燃料稳态的神经元自发放电中的作用。