Suppr超能文献

使用化学处理单元实现化学数字化:从合成到发现。

Digitizing Chemistry Using the Chemical Processing Unit: From Synthesis to Discovery.

机构信息

School of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom.

出版信息

Acc Chem Res. 2021 Jan 19;54(2):253-262. doi: 10.1021/acs.accounts.0c00674. Epub 2020 Dec 28.

Abstract

The digitization of chemistry is not simply about using machine learning or artificial intelligence systems to process chemical data, or about the development of ever more capable automation hardware; instead, it is the creation of a hard link between an abstracted process ontology of chemistry and bespoke hardware for performing reactions or exploring reactivity. Chemical digitization is therefore about the unambiguous development of an architecture, a chemical state machine, that uses this ontology to connect precise instruction sets to hardware that performs chemical transformations. This approach enables a universal standard for describing chemistry procedures via a chemical programming language and facilitates unambiguous dissemination of these procedures. We predict that this standard will revolutionize the ability of chemists to collaborate, increase reproducibility and safety, as we all as optimize for cost and efficiency. Most importantly, the digitization of chemistry will dramatically reduce the labor needed to make new compounds and broaden accessible chemical space. In recent years, the developments of automation in chemistry have gone beyond flow chemistry alone, with many bespoke workflows being developed not only for automating chemical synthesis but also for materials, nanomaterials, and formulation production. Indeed, the leap from fixed-configuration synthesis machines like peptide, nucleic acid, or dedicated cross-coupling engines is important for developing a truly universal approach to "dial-a-molecule". In this case, a key conceptual leap is the use of a batch system that can encode the chemical reagents, solvent, and products as packets which can be moved around the system, and a graph-based approach for the description of hardware modules that allows the compilation of chemical code that runs on, in principle, any hardware. Further, the integration of sensor systems for monitoring and controlling the state of the chemical synthesis machine, as well as high resolution spectroscopic tools, is vital if these systems are to facilitate closed-loop autonomous experiments. Systems that not only make molecules and materials, but also optimize their function, and use algorithms to assist with the development of new synthetic pathways and process optimization are also possible. Here, we discuss how the digitization of chemistry is happening, building on the plethora of technological developments in hardware and software. Importantly, digital-chemical robot systems need to integrate feedback from simple sensors, e.g., conductivity or temperature, as well as online analytics in order to navigate process space autonomously. This will open the door to accessing known molecules (synthesis), exploring whether known compounds/reactions are possible under new conditions (optimization), and searching chemical space for unknown and unexpected new molecules, reactions, and modes of reactivity (discovery). We will also discuss the role of chemical knowledge and how this can be used to challenge bias, as well as define and expand synthetically accessible chemical space using programmable robotic chemical state machines.

摘要

化学数字化不仅仅是使用机器学习或人工智能系统来处理化学数据,也不仅仅是开发更强大的自动化硬件;相反,它是在化学的抽象过程本体论和执行反应或探索反应性的定制硬件之间建立一个硬链接。因此,化学数字化是关于明确开发一种架构,即化学状态机,该架构使用该本体论将精确的指令集连接到执行化学转化的硬件上。这种方法为通过化学编程语言描述化学程序提供了一个通用标准,并促进了这些程序的明确传播。我们预测,这个标准将彻底改变化学家协作的能力,提高可重复性和安全性,同时优化成本和效率。最重要的是,化学数字化将大大减少制造新化合物所需的劳动力,并扩大可访问的化学空间。近年来,化学自动化的发展不仅超越了单纯的流动化学,许多定制的工作流程不仅被开发用于自动化化学合成,还被开发用于材料、纳米材料和制剂生产。事实上,从固定配置合成机器(如肽、核酸或专用交叉偶联引擎)的飞跃对于开发真正通用的“拨号分子”方法非常重要。在这种情况下,一个关键的概念飞跃是使用批处理系统,可以将化学试剂、溶剂和产物编码为可以在系统中移动的数据包,以及用于描述硬件模块的基于图的方法,允许编译在原则上可以在任何硬件上运行的化学代码。此外,如果这些系统要促进闭环自主实验,那么集成用于监测和控制化学合成机器状态的传感器系统以及高分辨率光谱工具至关重要。不仅可以制造分子和材料,而且还可以优化其功能,并使用算法来协助开发新的合成途径和工艺优化的系统也是可能的。在这里,我们讨论化学数字化是如何发生的,它建立在硬件和软件方面众多技术发展的基础上。重要的是,数字化化学机器人系统需要整合来自简单传感器(例如电导率或温度)的反馈,以及在线分析,以便能够自主导航过程空间。这将为访问已知分子(合成)、探索在新条件下是否可能进行已知化合物/反应(优化)以及搜索未知和意外新分子、反应和反应性模式(发现)打开大门。我们还将讨论化学知识的作用以及如何利用它来挑战偏见,以及使用可编程机器人化学状态机定义和扩展可合成的化学空间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验