Bai Jiaru, Mosbach Sebastian, Taylor Connor J, Karan Dogancan, Lee Kok Foong, Rihm Simon D, Akroyd Jethro, Lapkin Alexei A, Kraft Markus
Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
Cambridge Centre for Advanced Research and Education in Singapore (CARES), 1 Create Way, CREATE Tower, #05-05, Singapore, 138602, Singapore.
Nat Commun. 2024 Jan 23;15(1):462. doi: 10.1038/s41467-023-44599-9.
The ability to integrate resources and share knowledge across organisations empowers scientists to expedite the scientific discovery process. This is especially crucial in addressing emerging global challenges that require global solutions. In this work, we develop an architecture for distributed self-driving laboratories within The World Avatar project, which seeks to create an all-encompassing digital twin based on a dynamic knowledge graph. We employ ontologies to capture data and material flows in design-make-test-analyse cycles, utilising autonomous agents as executable knowledge components to carry out the experimentation workflow. Data provenance is recorded to ensure its findability, accessibility, interoperability, and reusability. We demonstrate the practical application of our framework by linking two robots in Cambridge and Singapore for a collaborative closed-loop optimisation for a pharmaceutically-relevant aldol condensation reaction in real-time. The knowledge graph autonomously evolves toward the scientist's research goals, with the two robots effectively generating a Pareto front for cost-yield optimisation in three days.
跨组织整合资源和共享知识的能力使科学家能够加快科学发现过程。这对于应对需要全球解决方案的新出现的全球挑战尤为关键。在这项工作中,我们在“世界阿凡达”项目中开发了一种分布式自动驾驶实验室架构,该项目旨在基于动态知识图谱创建一个包罗万象的数字孪生。我们使用本体来捕获设计-制造-测试-分析循环中的数据和物质流,利用自主代理作为可执行的知识组件来执行实验工作流程。记录数据出处以确保其可查找性、可访问性、互操作性和可重用性。我们通过将剑桥和新加坡的两个机器人连接起来,对与制药相关的羟醛缩合反应进行实时协作闭环优化,展示了我们框架的实际应用。知识图谱朝着科学家的研究目标自主演进,两个机器人在三天内有效地生成了成本-产率优化的帕累托前沿。