Palla Mirkó, Punthambaker Sukanya, Stranges Benjamin, Vigneault Frederic, Nivala Jeff, Wiegand Daniel, Ayer Aruna, Craig Timothy, Gremyachinskiy Dmitriy, Franklin Helen, Sun Shaw, Pollard James, Trans Andrew, Arnold Cleoma, Schwab Charles, Mcgaw Colin, Sarvabhowman Preethi, Dalal Dhruti, Thai Eileen, Amato Evan, Lederman Ilya, Taing Meng, Kelley Sara, Qwan Adam, Fuller Carl W, Roever Stefan, Church George M
Harvard Medical School, Department of Genetics, Boston, Massachusetts 02115, United States.
Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States.
ACS Nano. 2021 Jan 26;15(1):489-502. doi: 10.1021/acsnano.0c05226. Epub 2020 Dec 28.
DNA polymerases have revolutionized the biotechnology field due to their ability to precisely replicate stored genetic information. Screening variants of these enzymes for specific properties gives the opportunity to identify polymerases with different features. We have previously developed a single-molecule DNA sequencing platform by coupling a DNA polymerase to an α-hemolysin pore on a nanopore array. Here, we use this approach to demonstrate a single-molecule method that enables rapid screening of polymerase variants in a multiplex manner. In this approach, barcoded DNA strands are complexed with polymerase variants and serve as templates for nanopore sequencing. Nanopore sequencing of the barcoded DNA reveals both the barcode identity and kinetic properties of the polymerase variant associated with the cognate barcode, allowing for multiplexed investigation of many polymerase variants in parallel on a single nanopore array. Further, we develop a robust classification algorithm that discriminates kinetic characteristics of the different polymerase mutants. As a proof of concept, we demonstrate the utility of our approach by screening a library of ∼100 polymerases to identify variants for potential applications of biotechnological interest. We anticipate our screening method to be broadly useful for applications that require polymerases with altered physical properties.
DNA聚合酶因其能够精确复制存储的遗传信息,给生物技术领域带来了变革。筛选这些酶的变体以寻找特定特性,为鉴定具有不同特征的聚合酶提供了机会。我们之前通过将DNA聚合酶与纳米孔阵列上的α-溶血素孔偶联,开发了一种单分子DNA测序平台。在此,我们使用这种方法展示了一种单分子方法,该方法能够以多重方式快速筛选聚合酶变体。在这种方法中,带条形码的DNA链与聚合酶变体复合,并作为纳米孔测序的模板。对带条形码的DNA进行纳米孔测序,既揭示了条形码的身份,也揭示了与同源条形码相关的聚合酶变体的动力学特性,从而能够在单个纳米孔阵列上并行对多个聚合酶变体进行多重研究。此外,我们开发了一种强大的分类算法,用于区分不同聚合酶突变体的动力学特征。作为概念验证,我们通过筛选一个约100种聚合酶的文库来鉴定具有生物技术应用潜力的变体,证明了我们方法的实用性。我们预计我们的筛选方法对于需要具有改变的物理性质的聚合酶的应用将具有广泛的用途。