Suppr超能文献

测量光谱分辨信息传递。

Measuring spectrally-resolved information transfer.

机构信息

Leibniz Institute for Resilience Research, Mainz, Germany.

MEG Unit, Brain Imaging Center, Goethe University, Frankfurt/Main, Germany.

出版信息

PLoS Comput Biol. 2020 Dec 28;16(12):e1008526. doi: 10.1371/journal.pcbi.1008526. eCollection 2020 Dec.

Abstract

Information transfer, measured by transfer entropy, is a key component of distributed computation. It is therefore important to understand the pattern of information transfer in order to unravel the distributed computational algorithms of a system. Since in many natural systems distributed computation is thought to rely on rhythmic processes a frequency resolved measure of information transfer is highly desirable. Here, we present a novel algorithm, and its efficient implementation, to identify separately frequencies sending and receiving information in a network. Our approach relies on the invertible maximum overlap discrete wavelet transform (MODWT) for the creation of surrogate data in the computation of transfer entropy and entirely avoids filtering of the original signals. The approach thereby avoids well-known problems due to phase shifts or the ineffectiveness of filtering in the information theoretic setting. We also show that measuring frequency-resolved information transfer is a partial information decomposition problem that cannot be fully resolved to date and discuss the implications of this issue. Last, we evaluate the performance of our algorithm on simulated data and apply it to human magnetoencephalography (MEG) recordings and to local field potential recordings in the ferret. In human MEG we demonstrate top-down information flow in temporal cortex from very high frequencies (above 100Hz) to both similarly high frequencies and to frequencies around 20Hz, i.e. a complex spectral configuration of cortical information transmission that has not been described before. In the ferret we show that the prefrontal cortex sends information at low frequencies (4-8 Hz) to early visual cortex (V1), while V1 receives the information at high frequencies (> 125 Hz).

摘要

信息传递,通过转移熵来衡量,是分布式计算的关键组成部分。因此,为了解开系统的分布式计算算法,了解信息传递的模式是很重要的。由于在许多自然系统中,分布式计算被认为依赖于节律过程,因此非常需要一种频率分辨的信息传递度量方法。在这里,我们提出了一种新的算法及其有效的实现方法,以分别识别网络中发送和接收信息的频率。我们的方法依赖于可反转的最大重叠离散小波变换(MODWT)来创建信息传递转移熵计算中的替代数据,并且完全避免了原始信号的滤波。因此,该方法避免了由于相位偏移或在信息论设置中滤波无效而导致的已知问题。我们还表明,测量频率分辨的信息传递是一个部分信息分解问题,目前还无法完全解决,并讨论了这个问题的影响。最后,我们评估了我们的算法在模拟数据上的性能,并将其应用于人类脑磁图(MEG)记录和雪貂的局部场电位记录。在人类 MEG 中,我们证明了来自颞叶皮质的自上而下的信息流来自非常高的频率(高于 100Hz)到同样高的频率和大约 20Hz 的频率,即皮质信息传输的复杂频谱结构以前没有描述过。在雪貂中,我们表明前额叶皮质以低频率(4-8 Hz)向早期视觉皮层(V1)发送信息,而 V1 以高频率(> 125 Hz)接收信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32b1/7793276/0a066f2b9b6f/pcbi.1008526.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验