Lizier Joseph T, Bertschinger Nils, Jost Jürgen, Wibral Michael
Complex Systems Research Group and Centre for Complex Systems, Faculty of Engineering & IT, The University of Sydney, NSW 2006, Australia.
Frankfurt Institute of Advanced Studies (FIAS) and Goethe University, 60438 Frankfurt am Main, Germany.
Entropy (Basel). 2018 Apr 23;20(4):307. doi: 10.3390/e20040307.
The formulation of the Partial Information Decomposition (PID) framework by Williams and Beer in 2010 attracted a significant amount of attention to the problem of defining redundant (or shared), unique and synergistic (or complementary) components of mutual information that a set of source variables provides about a target. This attention resulted in a number of measures proposed to capture these concepts, theoretical investigations into such measures, and applications to empirical data (in particular to datasets from neuroscience). In this Special Issue on "Information Decomposition of Target Effects from Multi-Source Interactions" at Entropy, we have gathered current work on such information decomposition approaches from many of the leading research groups in the field. We begin our editorial by providing the reader with a review of previous information decomposition research, including an overview of the variety of measures proposed, how they have been interpreted and applied to empirical investigations. We then introduce the articles included in the special issue one by one, providing a similar categorisation of these articles into: i. proposals of new measures; ii. theoretical investigations into properties and interpretations of such approaches, and iii. applications of these measures in empirical studies. We finish by providing an outlook on the future of the field.
2010年,威廉姆斯和比尔提出了部分信息分解(PID)框架,这使得人们对定义一组源变量关于目标所提供的互信息中的冗余(或共享)、独特以及协同(或互补)成分的问题给予了大量关注。这种关注催生了一些旨在捕捉这些概念的度量方法、对这些度量方法的理论研究以及对实证数据(特别是神经科学数据集)的应用。在《熵》杂志的“多源相互作用中目标效应的信息分解”特刊中,我们汇集了该领域许多顶尖研究团队关于此类信息分解方法的当前研究成果。我们在编辑前言中首先向读者回顾以往的信息分解研究,包括对所提出的各种度量方法的概述,以及它们是如何被解释并应用于实证研究的。然后我们逐一介绍特刊中包含的文章,并对这些文章进行类似的分类:一、新度量方法的提议;二、对此类方法的性质和解释的理论研究;三、这些度量方法在实证研究中的应用。最后,我们对该领域的未来发展进行展望。