Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Korea.
Department of Computer Sciences, Bahria University, Lahore 54000, Pakistan.
Genes (Basel). 2020 Dec 21;11(12):1529. doi: 10.3390/genes11121529.
A promoter is a small region within the DNA structure that has an important role in initiating transcription of a specific gene in the genome. Different types of promoters are recognized by their different functions. Due to the importance of promoter functions, computational tools for the prediction and classification of a promoter are highly desired. Promoters resemble each other; therefore, their precise classification is an important challenge. In this study, we propose a convolutional neural network (CNN)-based tool, the pcPromoter-CNN, for application in the prediction of promotors and their classification into subclasses σ70, σ54, σ38, σ32, σ28 and σ24. This CNN-based tool uses a one-hot encoding scheme for promoter classification. The tools architecture was trained and tested on a benchmark dataset. To evaluate its classification performance, we used four evaluation metrics. The model exhibited notable improvement over that of existing state-of-the-art tools.
启动子是 DNA 结构中的一个小区域,在基因组中起始特定基因的转录中具有重要作用。不同类型的启动子因其不同的功能而被识别。由于启动子功能的重要性,人们非常希望开发用于预测和分类启动子的计算工具。启动子彼此相似;因此,对它们进行精确分类是一个重要的挑战。在这项研究中,我们提出了一种基于卷积神经网络(CNN)的工具 pcPromoter-CNN,用于预测启动子及其分类为 σ70、σ54、σ38、σ32、σ28 和 σ24 亚类。这个基于 CNN 的工具使用了一种独热编码方案来进行启动子分类。该工具的架构在基准数据集上进行了训练和测试。为了评估其分类性能,我们使用了四个评估指标。该模型的表现明显优于现有的最先进的工具。