Suppr超能文献

pcPromoter-CNN:一种基于 CNN 的启动子预测和分类方法。

pcPromoter-CNN: A CNN-Based Prediction and Classification of Promoters.

机构信息

Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Korea.

Department of Computer Sciences, Bahria University, Lahore 54000, Pakistan.

出版信息

Genes (Basel). 2020 Dec 21;11(12):1529. doi: 10.3390/genes11121529.

Abstract

A promoter is a small region within the DNA structure that has an important role in initiating transcription of a specific gene in the genome. Different types of promoters are recognized by their different functions. Due to the importance of promoter functions, computational tools for the prediction and classification of a promoter are highly desired. Promoters resemble each other; therefore, their precise classification is an important challenge. In this study, we propose a convolutional neural network (CNN)-based tool, the pcPromoter-CNN, for application in the prediction of promotors and their classification into subclasses σ70, σ54, σ38, σ32, σ28 and σ24. This CNN-based tool uses a one-hot encoding scheme for promoter classification. The tools architecture was trained and tested on a benchmark dataset. To evaluate its classification performance, we used four evaluation metrics. The model exhibited notable improvement over that of existing state-of-the-art tools.

摘要

启动子是 DNA 结构中的一个小区域,在基因组中起始特定基因的转录中具有重要作用。不同类型的启动子因其不同的功能而被识别。由于启动子功能的重要性,人们非常希望开发用于预测和分类启动子的计算工具。启动子彼此相似;因此,对它们进行精确分类是一个重要的挑战。在这项研究中,我们提出了一种基于卷积神经网络(CNN)的工具 pcPromoter-CNN,用于预测启动子及其分类为 σ70、σ54、σ38、σ32、σ28 和 σ24 亚类。这个基于 CNN 的工具使用了一种独热编码方案来进行启动子分类。该工具的架构在基准数据集上进行了训练和测试。为了评估其分类性能,我们使用了四个评估指标。该模型的表现明显优于现有的最先进的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca0e/7767505/12a7815e636b/genes-11-01529-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验