Suppr超能文献

使用CNN-GRU-LSTM混合深度学习模型对沙特阿拉伯卡西姆地区的气候变化进行预测

Climate change prediction in Saudi Arabia using a CNN GRU LSTM hybrid deep learning model in al Qassim region.

作者信息

Elabd Emad, Hamouda Hany Mohamed, Ali M A Mohamed, Fouad Yasser

机构信息

Department of Management Information Systems, College of Business and Economics, Qassim University, Buraidah, 51452, Qassim, Saudi Arabia.

Department of Information Systems, Faculty of Computers and Information, Menoufia University, Shebin El Kom, Egypt.

出版信息

Sci Rep. 2025 May 10;15(1):16275. doi: 10.1038/s41598-025-00607-0.

Abstract

Climate change, which causes long-term temperature and weather changes, threatens natural ecosystems and cities. It has worldwide economic consequences. Climate change trends up to 2050 are predicted using the hybrid model that consists of Convolutional Neural Network-Gated Recurrent Unit-Long Short-Term Memory (CNN-GRU-LSTM), a unique deep learning architecture. With a focus on Al-Qassim Region, Saudi Arabia, the model assesses temperature, air temperature dew point, visibility distance, and atmospheric sea-level pressure. We used Synthetic Minority Over-sampling Technique for Regression with Gaussian Noise (SMOGN) to reduce dataset imbalance. The CNN-GRU-LSTM model was compared to 5 classic regression models: DTR, RFR, ETR, BRR, and K-Nearest Neighbors. Five main measures were used to evaluate model performance: MSE, MAE, MedAE, RMSE, and R². After Min-Max normalization, the dataset was split into training (70%), validation (15%), and testing (15%) sets. The paper shows that the CNN-GRU-LSTM model beats standard regression methods in all four climatic scenarios, with R² values of 99.62%, 99.15%, 99.71%, and 99.60%. Deep learning predicts climate change well and can guide environmental policy and urban development decisions.

摘要

气候变化会导致长期的气温和天气变化,威胁着自然生态系统和城市。它具有全球范围的经济影响。使用由卷积神经网络-门控循环单元-长短期记忆(CNN-GRU-LSTM)组成的混合模型预测了直至2050年的气候变化趋势,这是一种独特的深度学习架构。以沙特阿拉伯的卡西姆地区为重点,该模型评估气温、气温露点、能见距离和大气海平面压力。我们使用带高斯噪声的回归合成少数过采样技术(SMOGN)来减少数据集不平衡。将CNN-GRU-LSTM模型与5种经典回归模型进行比较:决策树回归(DTR)、随机森林回归(RFR)、极端随机树回归(ETR)、贝叶斯岭回归(BRR)和K近邻算法(K-Nearest Neighbors)。使用五项主要指标评估模型性能:均方误差(MSE)、平均绝对误差(MAE)、中位数绝对误差(MedAE)、均方根误差(RMSE)和决定系数(R²)。经过最小-最大归一化后,将数据集划分为训练集(70%)、验证集(15%)和测试集(15%)。本文表明,在所有四种气候情景下,CNN-GRU-LSTM模型均优于标准回归方法,其R²值分别为99.62%、99.15%、99.71%和99.60%。深度学习能很好地预测气候变化,并可为环境政策和城市发展决策提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57e4/12064739/8b3293565f5b/41598_2025_607_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验