Teo Ruijie D, Du Xiaochen, Vera Héctor Luis Torres, Migliore Agostino, Beratan David N
Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.
Department of Computer Science, Duke University, Durham, North Carolina 27708, United States.
J Phys Chem B. 2021 Jan 14;125(1):17-23. doi: 10.1021/acs.jpcb.0c08598. Epub 2020 Dec 28.
Experimental evidence suggests that DNA-mediated redox signaling between high-potential [FeS] proteins is relevant to DNA replication and repair processes, and protein-mediated charge transfer (CT) between [FeS] clusters and nucleic acids is a fundamental process of the signaling and repair mechanisms. We analyzed the dominant CT pathways in the base excision repair glycosylase MutY using molecular dynamics simulations and hole hopping pathway analysis. We find that the adenine nucleobase of the mismatched A·oxoG DNA base pair facilitates [FeS]-DNA CT prior to adenine excision by MutY. We also find that the R153L mutation in MutY (linked to colorectal adenomatous polyposis) influences the dominant [Fe4S4]-DNA CT pathways and appreciably decreases their effective CT rates.
实验证据表明,高电位[FeS]蛋白之间由DNA介导的氧化还原信号传导与DNA复制和修复过程相关,并且[FeS]簇与核酸之间由蛋白质介导的电荷转移(CT)是信号传导和修复机制的一个基本过程。我们使用分子动力学模拟和空穴跳跃途径分析,分析了碱基切除修复糖基化酶MutY中的主要CT途径。我们发现,错配的A·oxoG DNA碱基对中的腺嘌呤碱基在MutY切除腺嘌呤之前促进了[FeS]-DNA CT。我们还发现,MutY中的R153L突变(与结直肠腺瘤性息肉病相关)影响主要的[Fe4S4]-DNA CT途径,并显著降低其有效CT速率。