Larrañaga Olatz, Arrieta Ana, Fonseca Guerra Célia, Bickelhaupt F Matthias, de Cózar Abel
Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco (UPV/EHU), Donostia International Physics Center (DIPC), P. K. 1072, 20018, San Sebastián-Donostia, Spain.
Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081, HV Amsterdam, The Netherlands.
Chem Asian J. 2021 Feb 15;16(4):315-321. doi: 10.1002/asia.202001201. Epub 2021 Jan 14.
We have quantum chemically studied the structure and nature of alkali- and coinage-metal bonds (M-bonds) versus that of hydrogen bonds between A-M and B in archetypal [A-M⋅⋅⋅B] model systems (A, B=F, Cl and M=H, Li, Na, Cu, Ag, Au), using relativistic density functional theory at ZORA-BP86-D3/TZ2P. We find that coinage-metal bonds are stronger than alkali-metal bonds which are stronger than the corresponding hydrogen bonds. Our main purpose is to understand how and why the structure, stability and nature of such bonds are affected if the monovalent central atom H of hydrogen bonds is replaced by an isoelectronic alkali- or coinage-metal atom. To this end, we have analyzed the bonds between A-M and B using the activation strain model, quantitative Kohn-Sham molecular orbital (MO) theory, energy decomposition analysis (EDA), and Voronoi deformation density (VDD) analysis of the charge distribution.
我们使用相对论密度泛函理论(ZORA-BP86-D3/TZ2P),对原型[A-M⋅⋅⋅B]模型体系(A、B = F、Cl,M = H、Li、Na、Cu、Ag、Au)中碱金属和贵金属键(M键)与A-M和B之间氢键的结构和性质进行了量子化学研究。我们发现,贵金属键比碱金属键更强,而碱金属键又比相应的氢键更强。我们的主要目的是了解,如果氢键的单价中心原子H被等电子的碱金属或贵金属原子取代,此类键的结构、稳定性和性质将如何以及为何受到影响。为此,我们使用活化应变模型、定量Kohn-Sham分子轨道(MO)理论、能量分解分析(EDA)以及电荷分布的Voronoi变形密度(VDD)分析,对A-M和B之间的键进行了分析。