Suppr超能文献

眶额皮质中单个神经元重建所揭示的发散投射模式

Divergent Projection Patterns Revealed by Reconstruction of Individual Neurons in Orbitofrontal Cortex.

作者信息

Wang Junjun, Sun Pei, Lv Xiaohua, Jin Sen, Li Anan, Kuang Jianxia, Li Ning, Gang Yadong, Guo Rui, Zeng Shaoqun, Xu Fuqiang, Zhang Yu-Hui

机构信息

Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.

MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China.

出版信息

Neurosci Bull. 2021 Apr;37(4):461-477. doi: 10.1007/s12264-020-00616-1. Epub 2020 Dec 29.

Abstract

The orbitofrontal cortex (OFC) is involved in diverse brain functions via its extensive projections to multiple target regions. There is a growing understanding of the overall outputs of the OFC at the population level, but reports of the projection patterns of individual OFC neurons across different cortical layers remain rare. Here, by combining neuronal sparse and bright labeling with a whole-brain florescence imaging system (fMOST), we obtained an uninterrupted three-dimensional whole-brain dataset and achieved the full morphological reconstruction of 25 OFC pyramidal neurons. We compared the whole-brain projection targets of these individual OFC neurons in different cortical layers as well as in the same cortical layer. We found cortical layer-dependent projections characterized by divergent patterns for information delivery. Our study not only provides a structural basis for understanding the principles of laminar organizations in the OFC, but also provides clues for future functional and behavioral studies on OFC pyramidal neurons.

摘要

眶额皮质(OFC)通过其向多个目标区域的广泛投射参与多种脑功能。人们对群体水平上OFC的整体输出有了越来越多的了解,但关于单个OFC神经元在不同皮质层的投射模式的报道仍然很少。在这里,通过将神经元稀疏和明亮标记与全脑荧光成像系统(fMOST)相结合,我们获得了一个不间断的三维全脑数据集,并实现了25个OFC锥体神经元的完整形态重建。我们比较了这些单个OFC神经元在不同皮质层以及同一皮质层中的全脑投射目标。我们发现了以发散模式为特征的皮质层依赖性投射,用于信息传递。我们的研究不仅为理解OFC中层状组织的原理提供了结构基础,也为未来关于OFC锥体神经元的功能和行为研究提供了线索。

相似文献

1
Divergent Projection Patterns Revealed by Reconstruction of Individual Neurons in Orbitofrontal Cortex.
Neurosci Bull. 2021 Apr;37(4):461-477. doi: 10.1007/s12264-020-00616-1. Epub 2020 Dec 29.
3
Topographic organization of orbitofrontal projections to the parahippocampal region in rats.
J Comp Neurol. 2014 Mar;522(4):772-93. doi: 10.1002/cne.23442.
4
Orbitofrontal Cortex Neurons Respond to Sound and Activate Primary Auditory Cortex Neurons.
Cereb Cortex. 2018 Mar 1;28(3):868-879. doi: 10.1093/cercor/bhw409.
6
Organization of orbitofrontal-auditory pathways in the Mongolian gerbil.
J Comp Neurol. 2023 Oct;531(14):1459-1481. doi: 10.1002/cne.25525. Epub 2023 Jul 21.
7
Dopamine Modulates the Functional Organization of the Orbitofrontal Cortex.
J Neurosci. 2017 Feb 8;37(6):1493-1504. doi: 10.1523/JNEUROSCI.2827-16.2016. Epub 2017 Jan 9.
8
Neuronal representation of individual heroin choices in the orbitofrontal cortex.
Addict Biol. 2018 May;23(3):880-888. doi: 10.1111/adb.12536. Epub 2017 Jul 13.
10

引用本文的文献

1
Orbitofrontal cortex influences dopamine dynamics associated with alloparental behavioral acquisition in female mice.
Sci Adv. 2025 Jul 4;11(27):eadr4620. doi: 10.1126/sciadv.adr4620. Epub 2025 Jul 2.
2
Modular strategies for spatial mapping of diverse cell type data of the mouse brain.
Res Sq. 2025 Apr 9:rs.3.rs-6289741. doi: 10.21203/rs.3.rs-6289741/v1.
3
Anatomical mapping of whole-brain monosynaptic inputs to the orbitofrontal cortex.
Front Neural Circuits. 2025 Apr 4;19:1567036. doi: 10.3389/fncir.2025.1567036. eCollection 2025.
4
Whole-brain Mapping of Inputs and Outputs of Specific Orbitofrontal Cortical Neurons in Mice.
Neurosci Bull. 2024 Nov;40(11):1681-1698. doi: 10.1007/s12264-024-01229-8. Epub 2024 May 27.
5
Whole-brain Optical Imaging: A Powerful Tool for Precise Brain Mapping at the Mesoscopic Level.
Neurosci Bull. 2023 Dec;39(12):1840-1858. doi: 10.1007/s12264-023-01112-y. Epub 2023 Sep 16.
6
A Novel Retrograde AAV Variant for Functional Manipulation of Cortical Projection Neurons in Mice and Monkeys.
Neurosci Bull. 2024 Jan;40(1):90-102. doi: 10.1007/s12264-023-01091-0. Epub 2023 Jul 11.
7
The Secondary Motor Cortex-striatum Circuit Contributes to Suppressing Inappropriate Responses in Perceptual Decision Behavior.
Neurosci Bull. 2023 Oct;39(10):1544-1560. doi: 10.1007/s12264-023-01073-2. Epub 2023 May 31.
8
A molecularly integrated amygdalo-fronto-striatal network coordinates flexible learning and memory.
Nat Neurosci. 2022 Sep;25(9):1213-1224. doi: 10.1038/s41593-022-01148-9. Epub 2022 Aug 30.
9
Whole-Brain Connectome of GABAergic Neurons in the Mouse Zona Incerta.
Neurosci Bull. 2022 Nov;38(11):1315-1329. doi: 10.1007/s12264-022-00930-w. Epub 2022 Aug 19.
10
High-resolution 3D demonstration of regional heterogeneity in the glymphatic system.
J Cereb Blood Flow Metab. 2022 Nov;42(11):2017-2031. doi: 10.1177/0271678X221109997. Epub 2022 Jul 3.

本文引用的文献

1
Anxiety-related cell-type-specific neural circuits in the anterior-dorsal bed nucleus of the stria terminalis.
Sci Bull (Beijing). 2020 Jul 30;65(14):1203-1216. doi: 10.1016/j.scib.2020.03.028. Epub 2020 Mar 21.
2
Pinpointing Morphology and Projection of Excitatory Neurons in Mouse Visual Cortex.
Front Neurosci. 2019 Aug 29;13:912. doi: 10.3389/fnins.2019.00912. eCollection 2019.
3
Reconstruction of 1,000 Projection Neurons Reveals New Cell Types and Organization of Long-Range Connectivity in the Mouse Brain.
Cell. 2019 Sep 19;179(1):268-281.e13. doi: 10.1016/j.cell.2019.07.042. Epub 2019 Sep 5.
4
The Glutamatergic Postrhinal Cortex-Ventrolateral Orbitofrontal Cortex Pathway Regulates Spatial Memory Retrieval.
Neurosci Bull. 2019 Jun;35(3):447-460. doi: 10.1007/s12264-018-0325-4. Epub 2019 Jan 2.
7
The logic of single-cell projections from visual cortex.
Nature. 2018 Apr 5;556(7699):51-56. doi: 10.1038/nature26159. Epub 2018 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验