Suppr超能文献

重建 1000 个投射神经元揭示了小鼠大脑中的新细胞类型和长程连接的组织方式。

Reconstruction of 1,000 Projection Neurons Reveals New Cell Types and Organization of Long-Range Connectivity in the Mouse Brain.

机构信息

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.

Laboratory of Molecular Genetics, The Rockefeller University, New York, NY 10065, USA.

出版信息

Cell. 2019 Sep 19;179(1):268-281.e13. doi: 10.1016/j.cell.2019.07.042. Epub 2019 Sep 5.

Abstract

Neuronal cell types are the nodes of neural circuits that determine the flow of information within the brain. Neuronal morphology, especially the shape of the axonal arbor, provides an essential descriptor of cell type and reveals how individual neurons route their output across the brain. Despite the importance of morphology, few projection neurons in the mouse brain have been reconstructed in their entirety. Here we present a robust and efficient platform for imaging and reconstructing complete neuronal morphologies, including axonal arbors that span substantial portions of the brain. We used this platform to reconstruct more than 1,000 projection neurons in the motor cortex, thalamus, subiculum, and hypothalamus. Together, the reconstructed neurons constitute more than 85 meters of axonal length and are available in a searchable online database. Axonal shapes revealed previously unknown subtypes of projection neurons and suggest organizational principles of long-range connectivity.

摘要

神经元细胞类型是神经回路的节点,决定了大脑内部信息的流动。神经元形态,尤其是轴突树突的形状,为细胞类型提供了一个基本描述,并揭示了单个神经元如何在大脑中传递其输出。尽管形态学很重要,但在小鼠大脑中,只有少数投射神经元被完整重建。在这里,我们提出了一个强大而高效的成像和重建完整神经元形态的平台,包括跨越大脑大部分区域的轴突树突。我们使用这个平台在运动皮层、丘脑、下托和下丘脑重建了超过 1000 个投射神经元。重建的神经元总长度超过 85 米,可以在一个可搜索的在线数据库中找到。轴突形状揭示了以前未知的投射神经元亚型,并为长程连接的组织原则提供了线索。

相似文献

1
Reconstruction of 1,000 Projection Neurons Reveals New Cell Types and Organization of Long-Range Connectivity in the Mouse Brain.
Cell. 2019 Sep 19;179(1):268-281.e13. doi: 10.1016/j.cell.2019.07.042. Epub 2019 Sep 5.
2
A platform for brain-wide imaging and reconstruction of individual neurons.
Elife. 2016 Jan 20;5:e10566. doi: 10.7554/eLife.10566.
3
Morphological diversity of single neurons in molecularly defined cell types.
Nature. 2021 Oct;598(7879):174-181. doi: 10.1038/s41586-021-03941-1. Epub 2021 Oct 6.
4
GTree: an Open-source Tool for Dense Reconstruction of Brain-wide Neuronal Population.
Neuroinformatics. 2021 Apr;19(2):305-317. doi: 10.1007/s12021-020-09484-6.
5
Brain-wide projection reconstruction of single functionally defined neurons.
Nat Commun. 2022 Mar 22;13(1):1531. doi: 10.1038/s41467-022-29229-0.
7
Generation of a whole-brain atlas for the cholinergic system and mesoscopic projectome analysis of basal forebrain cholinergic neurons.
Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):415-420. doi: 10.1073/pnas.1703601115. Epub 2017 Dec 19.
9
Anatomically revealed morphological patterns of pyramidal neurons in layer 5 of the motor cortex.
Sci Rep. 2020 May 13;10(1):7916. doi: 10.1038/s41598-020-64665-2.

引用本文的文献

3
A neuronal imaging dataset for deep learning in the reconstruction of single-neuron axons.
Front Neuroinform. 2025 Aug 5;19:1628030. doi: 10.3389/fninf.2025.1628030. eCollection 2025.
5
Contrastive learning-driven framework for neuron morphology classification.
Sci Rep. 2025 Jul 30;15(1):27752. doi: 10.1038/s41598-025-11842-w.
6
Image enhancement network based on fiber topology-preserving multi-module fusion for neuron reconstruction.
Biomed Opt Express. 2025 Jun 2;16(7):2584-2600. doi: 10.1364/BOE.562737. eCollection 2025 Jul 1.
7
Generating brain-wide connectome using synthetic axonal morphologies.
Nat Commun. 2025 Jul 18;16(1):6611. doi: 10.1038/s41467-025-62030-3.
9
Projection-TAGs enable multiplex projection tracing and multi-modal profiling of projection neurons.
Nat Commun. 2025 Jul 1;16(1):5557. doi: 10.1038/s41467-025-60360-w.

本文引用的文献

2
Distinct descending motor cortex pathways and their roles in movement.
Nature. 2018 Nov;563(7729):79-84. doi: 10.1038/s41586-018-0642-9. Epub 2018 Oct 31.
3
Shared and distinct transcriptomic cell types across neocortical areas.
Nature. 2018 Nov;563(7729):72-78. doi: 10.1038/s41586-018-0654-5. Epub 2018 Oct 31.
4
The subiculum is a patchwork of discrete subregions.
Elife. 2018 Oct 30;7:e37701. doi: 10.7554/eLife.37701.
6
Molecular Architecture of the Mouse Nervous System.
Cell. 2018 Aug 9;174(4):999-1014.e22. doi: 10.1016/j.cell.2018.06.021.
7
Dynamics and Spatial Genomics of the Nascent Transcriptome by Intron seqFISH.
Cell. 2018 Jul 12;174(2):363-376.e16. doi: 10.1016/j.cell.2018.05.035. Epub 2018 Jun 7.
8
Dissociable Structural and Functional Hippocampal Outputs via Distinct Subiculum Cell Classes.
Cell. 2018 May 17;173(5):1280-1292.e18. doi: 10.1016/j.cell.2018.03.031. Epub 2018 Apr 19.
9
The logic of single-cell projections from visual cortex.
Nature. 2018 Apr 5;556(7699):51-56. doi: 10.1038/nature26159. Epub 2018 Mar 28.
10
Inhibitory gain modulation of defense behaviors by zona incerta.
Nat Commun. 2018 Mar 20;9(1):1151. doi: 10.1038/s41467-018-03581-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验