Forster-Tonigold Katrin, Kim Jihyun, Bansmann Joachim, Groß Axel, Buchner Florian
Helmholtz Institute Ulm Electrochemical Energy Storage (HIU), Helmholtzstraße 11, 89081, Ulm, Germany.
Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany.
Chemphyschem. 2021 Mar 3;22(5):441-454. doi: 10.1002/cphc.202001033. Epub 2021 Feb 10.
In this work we aim towards the molecular understanding of the solid electrolyte interphase (SEI) formation at the electrode electrolyte interface (EEI). Herein, we investigated the interaction between the battery-relevant ionic liquid (IL) 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMP-TFSI), Li and a Co O (111) thin film model anode grown on Ir(100) as a model study of the SEI formation in Li-ion batteries (LIBs). We employed mostly X-ray photoelectron spectroscopy (XPS) in combination with dispersion-corrected density functional theory calculations (DFT-D3). If the surface is pre-covered by BMP-TFSI species (model electrolyte), post-deposition of Li (Li ion shuttle) reveals thermodynamically favorable TFSI decomposition products such as LiCN, Li NSO CF , LiF, Li S, Li O , Li O, but also kinetic products like Li NCH C H or LiNCH C H of BMP. Simultaneously, Li adsorption and/or lithiation of Co O (111) to Li Co O takes place due to insertion via step edges or defects; a partial transformation to CoO cannot be excluded. Formation of Co could not be observed in the experiment indicating that surface reaction products and inserted/adsorbed Li at the step edges may inhibit or slow down further Li diffusion into the bulk. This study provides detailed insights of the SEI formation at the EEI, which might be crucial for the improvement of future batteries.
在这项工作中,我们旨在从分子层面理解电极-电解质界面(EEI)处固体电解质界面(SEI)的形成。在此,我们研究了与电池相关的离子液体(IL)1-丁基-1-甲基吡咯烷鎓双(三氟甲基磺酰)亚胺(BMP-TFSI)、锂与生长在Ir(100)上的CoO(111)薄膜模型阳极之间的相互作用,以此作为锂离子电池(LIBs)中SEI形成的模型研究。我们主要采用X射线光电子能谱(XPS)并结合色散校正密度泛函理论计算(DFT-D3)。如果表面预先被BMP-TFSI物种(模型电解质)覆盖,锂(锂离子穿梭)的后沉积会揭示出热力学上有利的TFSI分解产物,如LiCN、LiNSOCF、LiF、LiS、LiO、LiO,还有BMP的动力学产物,如LiNCHCH或LiNCHCH。同时,由于通过台阶边缘或缺陷进行插入,CoO(111)会发生锂吸附和/或锂化形成LiCoO;不能排除部分转化为CoO的情况。实验中未观察到Co的形成,这表明表面反应产物以及台阶边缘处插入/吸附的锂可能会抑制或减缓锂进一步向体相的扩散。这项研究提供了EEI处SEI形成的详细见解,这对于未来电池的改进可能至关重要。