Suppr超能文献

基因组规模重建以评估代谢系统发育和生物聚类。

Genome-scale reconstructions to assess metabolic phylogeny and organism clustering.

机构信息

Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.

K.G. Jebsen Center for Genetic Epidemiology Department of Public Health and General Practice, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.

出版信息

PLoS One. 2020 Dec 29;15(12):e0240953. doi: 10.1371/journal.pone.0240953. eCollection 2020.

Abstract

Approaches for systematizing information of relatedness between organisms is important in biology. Phylogenetic analyses based on sets of highly conserved genes are currently the basis for the Tree of Life. Genome-scale metabolic reconstructions contain high-quality information regarding the metabolic capability of an organism and are typically restricted to metabolically active enzyme-encoding genes. While there are many tools available to generate draft reconstructions, expert-level knowledge is still required to generate and manually curate high-quality genome-scale metabolic models and to fill gaps in their reaction networks. Here, we use the tool AutoKEGGRec to construct 975 genome-scale metabolic draft reconstructions encoded in the KEGG database without further curation. The organisms are selected across all three domains, and their metabolic networks serve as basis for generating phylogenetic trees. We find that using all reactions encoded, these metabolism-based comparisons give rise to a phylogenetic tree with close similarity to the Tree of Life. While this tree is quite robust to reasonable levels of noise in the metabolic reaction content of an organism, we find a significant heterogeneity in how much noise an organism may tolerate before it is incorrectly placed in the tree. Furthermore, by using the protein sequences for particular metabolic functions and pathway sets, such as central carbon-, nitrogen-, and sulfur-metabolism, as basis for the organism comparisons, we generate highly specific phylogenetic trees. We believe the generation of phylogenetic trees based on metabolic reaction content, in particular when focused on specific functions and pathways, could aid the identification of functionally important metabolic enzymes and be of value for genome-scale metabolic modellers and enzyme-engineers.

摘要

在生物学中,对生物体相关性信息进行系统化的方法非常重要。基于高度保守基因集的系统发育分析目前是生命之树的基础。基因组规模的代谢重建包含有关生物体代谢能力的高质量信息,通常仅限于代谢活跃的酶编码基因。虽然有许多工具可用于生成草案重建,但仍需要专家级别的知识来生成和手动编辑高质量的基因组规模代谢模型,并填补其反应网络中的空白。在这里,我们使用 AutoKEGGRec 工具构建了 975 个无需进一步编辑的 KEGG 数据库中编码的基因组规模代谢草案重建。这些生物体是从所有三个领域中选择的,它们的代谢网络是生成系统发育树的基础。我们发现,使用所有编码的反应,这些基于代谢的比较产生的系统发育树与生命之树非常相似。虽然该树对于生物体代谢反应内容的合理水平噪声具有很强的鲁棒性,但我们发现生物体可能容忍的噪声量存在很大差异,以至于它在树中被错误放置。此外,通过使用特定代谢功能和途径集(如中心碳、氮和硫代谢)的蛋白质序列作为生物体比较的基础,我们生成了高度特异性的系统发育树。我们相信,基于代谢反应内容生成系统发育树,特别是当专注于特定功能和途径时,可以帮助识别功能重要的代谢酶,并对基因组规模的代谢建模者和酶工程师具有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ad7/7771690/78e85af22587/pone.0240953.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验