Suppr超能文献

代谢物挥发性估算方法的自动化

Automating methods for estimating metabolite volatility.

作者信息

Meredith Laura K, Ledford S Marshall, Riemer Kristina, Geffre Parker, Graves Kelsey, Honeker Linnea K, LeBauer David, Tfaily Malak M, Krechmer Jordan

机构信息

School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, United States.

BIO5 Institute, University of Arizona, Tucson, AZ, United States.

出版信息

Front Microbiol. 2023 Dec 14;14:1267234. doi: 10.3389/fmicb.2023.1267234. eCollection 2023.

Abstract

The volatility of metabolites can influence their biological roles and inform optimal methods for their detection. Yet, volatility information is not readily available for the large number of described metabolites, limiting the exploration of volatility as a fundamental trait of metabolites. Here, we adapted methods to estimate vapor pressure from the functional group composition of individual molecules (SIMPOL.1) to predict the gas-phase partitioning of compounds in different environments. We implemented these methods in a new open pipeline called that uses chemoinformatic tools to automate these volatility estimates for all metabolites in an extensive and continuously updated pathway database: the Kyoto Encyclopedia of Genes and Genomes (KEGG) that connects metabolites, organisms, and reactions. We first benchmark the automated pipeline against a manually curated data set and show that the same category of volatility (e.g., nonvolatile, low, moderate, high) is predicted for 93% of compounds. We then demonstrate how might be used to generate and test hypotheses about the role of volatility in biological systems and organisms. Specifically, we estimate that 3.4 and 26.6% of compounds in KEGG have high volatility depending on the environment (soil vs. clean atmosphere, respectively) and that a core set of volatiles is shared among all domains of life (30%) with the largest proportion of kingdom-specific volatiles identified in bacteria. With , we lay a foundation for uncovering the role of the volatilome using an approach that is easily integrated with other bioinformatic pipelines and can be continually refined to consider additional dimensions to volatility. The package is an accessible tool to help design and test hypotheses on volatile metabolites and their unique roles in biological systems.

摘要

代谢物的挥发性会影响其生物学作用,并为其检测的最佳方法提供信息。然而,对于大量已描述的代谢物,挥发性信息并不容易获得,这限制了将挥发性作为代谢物基本特征的探索。在这里,我们采用了根据单个分子的官能团组成来估计蒸气压的方法(SIMPOL.1),以预测化合物在不同环境中的气相分配。我们在一个名为 的新开放管道中实施了这些方法,该管道使用化学信息学工具对一个广泛且不断更新的通路数据库中所有代谢物的挥发性进行自动估计:连接代谢物、生物体和反应的京都基因与基因组百科全书(KEGG)。我们首先将自动管道与一个人工整理的数据集进行基准测试,结果表明93%的化合物被预测为同一类挥发性(例如,不挥发、低、中、高)。然后,我们展示了 如何用于生成和测试关于挥发性在生物系统和生物体中作用的假设。具体而言,我们估计KEGG中分别有3.4%和26.6%的化合物根据环境(分别为土壤与清洁大气)具有高挥发性,并且所有生命领域共享一组核心挥发性物质(30%),其中在细菌中鉴定出的特定王国挥发性物质比例最大。通过 ,我们为使用一种易于与其他生物信息学管道集成且可不断完善以考虑挥发性其他维度的方法来揭示挥发组的作用奠定了基础。 软件包是一个易于使用的工具,可帮助设计和测试关于挥发性代谢物及其在生物系统中独特作用的假设。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验