Beter Julia, Maroh Boris, Schrittesser Bernd, Mühlbacher Inge, Griesser Thomas, Schlögl Sandra, Fuchs Peter Filipp, Pinter Gerald
Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria.
Chair of Chemistry of Polymeric Materials, Montanuniversitaet Leoben, Otto-Gloeckel Strasse 2, 8700 Leoben, Austria.
Polymers (Basel). 2020 Dec 24;13(1):36. doi: 10.3390/polym13010036.
The interface between the reinforcement and surrounding matrix in a fibrous composite is decisive and critical for maintaining component performance, durability, and mechanical structure properties for load coupling assessment, especially for highly flexible composite materials. The clear trend towards tailored solutions reveals that an in-depth knowledge on surface treating methods to enhance the fiber-matrix interfacial interaction and adhesion properties for an optimized load transfer needs to be ensured. This research aims to quantify the effect of several surface treatments for glass fibers applied in endless fiber-reinforced elastomers with pronounced high deformations. Due to this, the glass fiber surface is directly modified with selected sizings, using a wet chemical treatment, and characterized according to chemical and mechanical aspects. For this purpose, the interfacial adhesion performance between fibers and the surrounding matrix material is investigated by a modified fiber pull-out device. The results clearly show that an optimized surface treatment improves the interface strength and chemical bonding significantly. The fiber pull-out test confirms that an optimized fiber-matrix interface can be enhanced up to 85% compared to standard surface modifications, which distinctly provides the basis of enhanced performances on the component level. These findings were validated by chemical analysis methods and corresponding optical damage analysis.
在纤维复合材料中,增强材料与周围基体之间的界面对于维持部件性能、耐久性以及用于载荷耦合评估的机械结构性能而言是决定性且至关重要的,特别是对于高柔韧性复合材料。定制解决方案的明显趋势表明,需要确保深入了解表面处理方法,以增强纤维与基体的界面相互作用和粘附性能,从而实现优化的载荷传递。本研究旨在量化几种表面处理对应用于具有明显高变形的连续纤维增强弹性体中的玻璃纤维的影响。因此,采用湿化学处理方法,用选定的浸润剂直接对玻璃纤维表面进行改性,并从化学和机械方面进行表征。为此,使用改进的纤维拔出装置研究纤维与周围基体材料之间的界面粘附性能。结果清楚地表明,优化的表面处理显著提高了界面强度和化学键合。纤维拔出试验证实,与标准表面改性相比,优化的纤维 - 基体界面强度可提高多达85%,这明显为部件级性能增强提供了基础。这些发现通过化学分析方法和相应的光学损伤分析得到了验证。