Suppr超能文献

用于智能家居系统的最优人工神经网络类型选择方法。

Optimal Artificial Neural Network Type Selection Method for Usage in Smart House Systems.

机构信息

Department of Automated Control Systems, Lviv Polytechnic National University, 79013 Lviv, Ukraine.

Department of Information Systems, Faculty of Management, Comenius University in Bratislava, Bratislava 25 82005, Slovakia.

出版信息

Sensors (Basel). 2020 Dec 24;21(1):47. doi: 10.3390/s21010047.

Abstract

In the process of the "smart" house systems work, there is a need to process fuzzy input data. The models based on the artificial neural networks are used to process fuzzy input data from the sensors. However, each artificial neural network has a certain advantage and, with a different accuracy, allows one to process different types of data and generate control signals. To solve this problem, a method of choosing the optimal type of artificial neural network has been proposed. It is based on solving an optimization problem, where the optimization criterion is an error of a certain type of artificial neural network determined to control the corresponding subsystem of a "smart" house. In the process of learning different types of artificial neural networks, the same historical input data are used. The research presents the dependencies between the types of neural networks, the number of inner layers of the artificial neural network, the number of neurons on each inner layer, the error of the settings parameters calculation of the relative expected results.

摘要

在“智能”房屋系统工作的过程中,需要处理模糊的输入数据。基于人工神经网络的模型用于处理来自传感器的模糊输入数据。然而,每个人工神经网络都有一定的优势,并且以不同的精度,可以处理不同类型的数据并生成控制信号。为了解决这个问题,提出了一种选择最佳类型的人工神经网络的方法。它基于解决优化问题,其中优化标准是确定控制“智能”房屋相应子系统的某种类型的人工神经网络的误差。在学习不同类型的人工神经网络的过程中,使用相同的历史输入数据。研究了神经网络的类型、人工神经网络的内部层数、每个内部层的神经元数量、相对预期结果的设置参数计算误差之间的关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b583/7795358/3acc26048451/sensors-21-00047-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验