Suppr超能文献

预测2型糖尿病患者心血管疾病风险的责任阈值模型:韩国成年人的多队列研究

The Liability Threshold Model for Predicting the Risk of Cardiovascular Disease in Patients with Type 2 Diabetes: A Multi-Cohort Study of Korean Adults.

作者信息

Hong Eun Pyo, Heo Seong Gu, Park Ji Wan

机构信息

Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.

Department of Neurology, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Metabolites. 2020 Dec 24;11(1):6. doi: 10.3390/metabo11010006.

Abstract

Personalized risk prediction for diabetic cardiovascular disease (DCVD) is at the core of precision medicine in type 2 diabetes (T2D). We first identified three marker sets consisting of 15, 47, and 231 tagging single nucleotide polymorphisms (tSNPs) associated with DCVD using a linear mixed model in 2378 T2D patients obtained from four population-based Korean cohorts. Using the genetic variants with even modest effects on phenotypic variance, we observed improved risk stratification accuracy beyond traditional risk factors (AUC, 0.63 to 0.97). With a cutoff point of 0.21, the discrete genetic liability threshold model consisting of 231 SNPs (GLT) correctly classified 87.7% of 2378 T2D patients as high or low risk of DCVD. For the same set of SNP markers, the GLT and polygenic risk score (PRS) models showed similar predictive performance, and we observed consistency between the GLT and PRS models in that the model based on a larger number of SNP markers showed much-improved predictability. In silico gene expression analysis, additional information was provided on the functional role of the genes identified in this study. In particular, , , , and appear to be major hubs in the functional gene network for DCVD. The proposed risk prediction approach based on the liability threshold model may help identify T2D patients at high CVD risk in East Asian populations with further external validations.

摘要

糖尿病心血管疾病(DCVD)的个性化风险预测是2型糖尿病(T2D)精准医学的核心。我们首先在从四个韩国人群队列中获得的2378例T2D患者中,使用线性混合模型确定了三个标记集,分别由15个、47个和231个与DCVD相关的标签单核苷酸多态性(tSNP)组成。使用对表型变异影响甚至较小的基因变异,我们观察到风险分层准确性超过了传统风险因素(AUC为0.63至0.97)。对于由231个SNP组成的离散遗传易感性阈值模型(GLT),在截断点为0.21时,正确地将2378例T2D患者中的87.7%分类为DCVD的高风险或低风险。对于同一组SNP标记,GLT和多基因风险评分(PRS)模型显示出相似的预测性能,并且我们观察到GLT和PRS模型之间的一致性,即基于更多SNP标记的模型显示出显著提高的可预测性。在计算机基因表达分析中,提供了关于本研究中鉴定的基因功能作用的额外信息。特别是,[此处可能缺失具体基因名称]似乎是DCVD功能基因网络中的主要枢纽。基于易感性阈值模型提出的风险预测方法可能有助于在东亚人群中识别出具有高心血管疾病风险的T2D患者,有待进一步外部验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8984/7824099/38dffea8bb23/metabolites-11-00006-g001.jpg

相似文献

2
An Improved Genome-Wide Polygenic Score Model for Predicting the Risk of Type 2 Diabetes.
Front Genet. 2021 Feb 11;12:632385. doi: 10.3389/fgene.2021.632385. eCollection 2021.
4
+647 A/C and +1245 MT1A polymorphisms in the susceptibility of diabetes mellitus and cardiovascular complications.
Mol Genet Metab. 2008 May;94(1):98-104. doi: 10.1016/j.ymgme.2007.12.006. Epub 2008 Jan 30.
5
Evaluation of three polygenic risk score models for the prediction of breast cancer risk in Singapore Chinese.
Oncotarget. 2018 Jan 31;9(16):12796-12804. doi: 10.18632/oncotarget.24374. eCollection 2018 Feb 27.
6
Assessment of whole-genome regression for type II diabetes.
PLoS One. 2015 Apr 17;10(4):e0123818. doi: 10.1371/journal.pone.0123818. eCollection 2015.
7
Efficient Implementation of Penalized Regression for Genetic Risk Prediction.
Genetics. 2019 May;212(1):65-74. doi: 10.1534/genetics.119.302019. Epub 2019 Feb 26.
8
10

引用本文的文献

1
Genetic modifiers of rare variants in monogenic developmental disorder loci.
Nat Genet. 2024 May;56(5):861-868. doi: 10.1038/s41588-024-01710-0. Epub 2024 Apr 18.
2
Genomic risk prediction of cardiovascular diseases among type 2 diabetes patients in the UK Biobank.
Front Bioinform. 2024 Jan 4;3:1320748. doi: 10.3389/fbinf.2023.1320748. eCollection 2023.

本文引用的文献

1
Analysis of polygenic risk score usage and performance in diverse human populations.
Nat Commun. 2019 Jul 25;10(1):3328. doi: 10.1038/s41467-019-11112-0.
2
Diabetes Fact Sheets in Korea, 2018: An Appraisal of Current Status.
Diabetes Metab J. 2019 Aug;43(4):487-494. doi: 10.4093/dmj.2019.0067. Epub 2019 Jul 17.
4
The Contribution of Low-Frequency and Rare Coding Variation to Susceptibility to Type 2 Diabetes.
Curr Diab Rep. 2019 Apr 8;19(5):25. doi: 10.1007/s11892-019-1142-5.
5
Clinical use of current polygenic risk scores may exacerbate health disparities.
Nat Genet. 2019 Apr;51(4):584-591. doi: 10.1038/s41588-019-0379-x. Epub 2019 Mar 29.
8
Genetic Tools for Coronary Risk Assessment in Type 2 Diabetes: A Cohort Study From the ACCORD Clinical Trial.
Diabetes Care. 2018 Nov;41(11):2404-2413. doi: 10.2337/dc18-0709. Epub 2018 Sep 27.
9
Biobank-driven genomic discovery yields new insight into atrial fibrillation biology.
Nat Genet. 2018 Sep;50(9):1234-1239. doi: 10.1038/s41588-018-0171-3. Epub 2018 Jul 30.
10
The personal and clinical utility of polygenic risk scores.
Nat Rev Genet. 2018 Sep;19(9):581-590. doi: 10.1038/s41576-018-0018-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验