Hong Eun Pyo, Heo Seong Gu, Park Ji Wan
Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.
Department of Neurology, Harvard Medical School, Boston, MA 02115, USA.
Metabolites. 2020 Dec 24;11(1):6. doi: 10.3390/metabo11010006.
Personalized risk prediction for diabetic cardiovascular disease (DCVD) is at the core of precision medicine in type 2 diabetes (T2D). We first identified three marker sets consisting of 15, 47, and 231 tagging single nucleotide polymorphisms (tSNPs) associated with DCVD using a linear mixed model in 2378 T2D patients obtained from four population-based Korean cohorts. Using the genetic variants with even modest effects on phenotypic variance, we observed improved risk stratification accuracy beyond traditional risk factors (AUC, 0.63 to 0.97). With a cutoff point of 0.21, the discrete genetic liability threshold model consisting of 231 SNPs (GLT) correctly classified 87.7% of 2378 T2D patients as high or low risk of DCVD. For the same set of SNP markers, the GLT and polygenic risk score (PRS) models showed similar predictive performance, and we observed consistency between the GLT and PRS models in that the model based on a larger number of SNP markers showed much-improved predictability. In silico gene expression analysis, additional information was provided on the functional role of the genes identified in this study. In particular, , , , and appear to be major hubs in the functional gene network for DCVD. The proposed risk prediction approach based on the liability threshold model may help identify T2D patients at high CVD risk in East Asian populations with further external validations.
糖尿病心血管疾病(DCVD)的个性化风险预测是2型糖尿病(T2D)精准医学的核心。我们首先在从四个韩国人群队列中获得的2378例T2D患者中,使用线性混合模型确定了三个标记集,分别由15个、47个和231个与DCVD相关的标签单核苷酸多态性(tSNP)组成。使用对表型变异影响甚至较小的基因变异,我们观察到风险分层准确性超过了传统风险因素(AUC为0.63至0.97)。对于由231个SNP组成的离散遗传易感性阈值模型(GLT),在截断点为0.21时,正确地将2378例T2D患者中的87.7%分类为DCVD的高风险或低风险。对于同一组SNP标记,GLT和多基因风险评分(PRS)模型显示出相似的预测性能,并且我们观察到GLT和PRS模型之间的一致性,即基于更多SNP标记的模型显示出显著提高的可预测性。在计算机基因表达分析中,提供了关于本研究中鉴定的基因功能作用的额外信息。特别是,[此处可能缺失具体基因名称]似乎是DCVD功能基因网络中的主要枢纽。基于易感性阈值模型提出的风险预测方法可能有助于在东亚人群中识别出具有高心血管疾病风险的T2D患者,有待进一步外部验证。