Suppr超能文献

一种用于预测2型糖尿病风险的改进的全基因组多基因评分模型

An Improved Genome-Wide Polygenic Score Model for Predicting the Risk of Type 2 Diabetes.

作者信息

Liu Wei, Zhuang Zhenhuang, Wang Wenxiu, Huang Tao, Liu Zhonghua

机构信息

Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, China.

Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.

出版信息

Front Genet. 2021 Feb 11;12:632385. doi: 10.3389/fgene.2021.632385. eCollection 2021.

Abstract

Polygenic risk score (PRS) has been shown to be predictive of disease risk such as type 2 diabetes (T2D). However, the existing studies on genetic prediction for T2D only had limited predictive power. To further improve the predictive capability of the PRS model in identifying individuals at high T2D risk, we proposed a new three-step filtering procedure, which aimed to include truly predictive single-nucleotide polymorphisms (SNPs) and avoid unpredictive ones into PRS model. First, we filtered SNPs according to the marginal association -values (≤ 5× 10) from large-scale genome-wide association studies. Second, we set linkage disequilibrium (LD) pruning thresholds ( ) as 0.2, 0.4, 0.6, and 0.8. Third, we set -value thresholds as 5× 10, 5× 10, 5× 10, and 5× 10. Then, we constructed and tested multiple candidate PRS models obtained by the PRSice-2 software among 182,422 individuals in the UK Biobank (UKB) testing dataset. We validated the predictive capability of the optimal PRS model that was chosen from the testing process in identifying individuals at high T2D risk based on the UKB validation dataset ( = 274,029). The prediction accuracy of the PRS model evaluated by the adjusted area under the receiver operating characteristics curve (AUC) showed that our PRS model had good prediction performance [AUC = 0.795, 95% confidence interval (CI): (0.790, 0.800)]. Specifically, our PRS model identified 30, 12, and 7% of the population at greater than five-, six-, and seven-fold risk for T2D, respectively. After adjusting for sex, age, physical measurements, and clinical factors, the AUC increased to 0.901 [95% CI: (0.897, 0.904)]. Therefore, our PRS model could be useful for population-level preventive T2D screening.

摘要

多基因风险评分(PRS)已被证明可预测2型糖尿病(T2D)等疾病风险。然而,现有的T2D基因预测研究的预测能力有限。为了进一步提高PRS模型识别T2D高风险个体的预测能力,我们提出了一种新的三步筛选程序,旨在将真正具有预测性的单核苷酸多态性(SNP)纳入PRS模型,并避免纳入无预测性的SNP。首先,我们根据大规模全基因组关联研究中的边际关联值(≤5×10)对SNP进行筛选。其次,我们将连锁不平衡(LD)修剪阈值()设置为0.2、0.4、0.6和0.8。第三,我们将值阈值设置为5×10、5×10、5×10和5×10。然后,我们在英国生物银行(UKB)测试数据集中的182,422名个体中构建并测试了通过PRSice-2软件获得的多个候选PRS模型。我们基于UKB验证数据集(=274,029)验证了从测试过程中选择的最佳PRS模型在识别T2D高风险个体方面的预测能力。通过调整后的受试者工作特征曲线下面积(AUC)评估的PRS模型的预测准确性表明,我们的PRS模型具有良好的预测性能[AUC = 0.795,95%置信区间(CI):(0.790,0.800)]。具体而言,我们的PRS模型分别识别出T2D风险高于五倍、六倍和七倍的人群中的30%、12%和7%。在调整性别、年龄、身体测量和临床因素后,AUC增加到0.901 [95% CI:(0.897,0.904)]。因此,我们的PRS模型可能有助于进行人群水平的T2D预防性筛查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de86/7905203/b8c9e660e382/fgene-12-632385-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验