Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 581055, China.
Institute of Theoretical Chemistry, Jilin University, Changchun 100231, China.
J Am Chem Soc. 2021 Jan 13;143(1):137-141. doi: 10.1021/jacs.0c12414. Epub 2020 Dec 29.
In aqueous solution, biological decarboxylation reactions proceed irreversibly to completion, whereas the reverse carboxylation processes are typically powered by the hydrolysis of ATP. The exchange of the carboxylate of ring-substituted arylacetates with isotope-labeled CO in polar aprotic solvents reported recently suggests a dramatic change in the partition of reaction pathways. Yet, there is little experimental data pertinent to the kinetic barriers for protonation and thermodynamic data on CO capture by the carbanions of decarboxylation reactions. Employing a combined quantum mechanical and molecular mechanical simulation approach, we investigated the decarboxylation reactions of a series of organic carboxylate compounds in aqueous and in dimethylformamide solutions, revealing that the reverse carboxylation barriers in solution are fully induced by solvent effects. A linear Bell-Evans-Polanyi relationship was found between the rates of decarboxylation and the Gibbs energies of reaction, indicating diminishing recombination barriers in DMF. In contrast, protonation of the carbanions by the DMF solvent has large free energy barriers, rendering the competing exchange of isotope-labeled CO reversible in DMF. The finding of an intricate interplay of carbanion stability and solute-solvent interaction in decarboxylation and carboxylation could be useful to designing novel materials for CO capture.
在水溶液中,生物脱羧反应不可逆地进行完全,而反向羧化过程通常由 ATP 的水解来驱动。最近报道的在极性非质子溶剂中环取代芳基乙酸酯的羧酸根与同位素标记的 CO 的交换表明,反应途径的分配发生了显著变化。然而,与质子化的动力学障碍和脱羧反应的碳负离子捕获 CO 的热力学数据相关的实验数据很少。我们采用了量子力学和分子力学模拟相结合的方法,研究了一系列有机羧酸化合物在水溶液和二甲基甲酰胺溶液中的脱羧反应,结果表明,溶剂效应对反应的反向羧化壁垒具有完全的诱导作用。我们发现脱羧反应的速率与反应的吉布斯能之间存在线性贝尔-埃文斯-波利尼关系,这表明在 DMF 中重组势垒减小。相比之下,DMF 溶剂对碳负离子的质子化具有较大的自由能障碍,使得同位素标记的 CO 的竞争交换在 DMF 中可逆。脱羧和羧化过程中碳负离子稳定性和溶质-溶剂相互作用的复杂相互作用的发现,可能有助于设计用于 CO 捕获的新型材料。