Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.
Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom; Department of Plastic Surgery, Stoke Mandeville Hospital, Buckinghamshire Healthcare NHS Trust, Aylesbury, United Kingdom.
J Plast Reconstr Aesthet Surg. 2021 Jun;74(6):1355-1401. doi: 10.1016/j.bjps.2020.12.029. Epub 2020 Dec 14.
Computerised adaptive testing (CAT) has the potential to transform plastic surgery outcome measurement by making patient-reported outcome measures (PROMs) shorter, individualised and more accurate than pen-and-paper questionnaires.
This paper reports the results of two optimisation studies for the CLEFT-Q CAT, a CAT intended for use in the field of cleft lip and/or palate. Specifically, we aimed to identify the optimal score estimation and item selection methods for using this CAT in clinical practice. These represent two major components of any CAT algorithm.
Monte Carlo simulations were performed using simulated data in the R statistical computing environment and incorporated a range of score estimation and item selection techniques. The performance and accuracy of the CAT was assessed by mean items administered, correlation between CAT scores and paired linear assessment scores, and the root mean squared deviation (RMSD) of these score pairs.
The accuracy of the CLEFT-Q CAT was not significantly affected by the choice of score estimation or item selection method. Sub-scales which originally contain more items were amenable to greater item reduction with CAT.
This study shows that score estimation and item selection methods that need minimal processing power can be used in the CLEFT-Q CAT without compromising accuracy. This means that the CLEFT-Q CAT could be administered quickly and efficiently with basic hardware demands. We recommend the use of less computationally intensive techniques in future CLEFT-Q CAT studies.
计算机化自适应测试(CAT)有可能通过使患者报告的结果测量(PROMs)比纸笔问卷更短、更个性化和更准确,从而改变整形手术结果的测量方式。
本文报告了 CLEFT-Q CAT 的两项优化研究的结果,这是一种用于唇腭裂领域的 CAT。具体而言,我们旨在确定在临床实践中使用这种 CAT 的最佳评分估计和项目选择方法。这些是任何 CAT 算法的两个主要组成部分。
使用 R 统计计算环境中的模拟数据进行蒙特卡罗模拟,并纳入了一系列评分估计和项目选择技术。通过平均分配的项目、CAT 分数与配对线性评估分数之间的相关性以及这些分数对的均方根偏差(RMSD)来评估 CAT 的性能和准确性。
CLEFT-Q CAT 的准确性不受评分估计或项目选择方法的选择影响。最初包含更多项目的子量表更适合使用 CAT 进行更大的项目减少。
这项研究表明,无需大量处理能力的评分估计和项目选择方法可用于 CLEFT-Q CAT 而不会影响准确性。这意味着 CLEFT-Q CAT 可以在基本硬件要求下快速有效地进行管理。我们建议在未来的 CLEFT-Q CAT 研究中使用计算量较小的技术。