Suppr超能文献

使用通用数据模型实现便携式临床自然语言处理系统——从Lisp的角度来看

Implementing a Portable Clinical NLP System with a Common Data Model - a Lisp Perspective.

作者信息

Luo Yuan, Szolovits Peter

机构信息

Dept. of Preventive Medicine, Northwestern University, Chicago, USA.

CSAIL, MIT, Cambridge, USA.

出版信息

Proceedings (IEEE Int Conf Bioinformatics Biomed). 2018 Dec;2018:461-466. doi: 10.1109/bibm.2018.8621521. Epub 2019 Jan 24.

Abstract

This paper presents a Lisp architecture for a portable NLP system, termed LAPNLP, for processing clinical notes. LAPNLP integrates multiple standard, customized and in-house developed NLP tools. Our system facilitates portability across different institutions and data systems by incorporating an enriched Common Data Model (CDM) to standardize necessary data elements. It utilizes UMLS to perform domain adaptation when integrating generic domain NLP tools. It also features stand-off annotations that are specified by positional reference to the original document. We built an interval tree based search engine to efficiently query and retrieve the stand-off annotations by specifying positional requirements. We also developed a utility to convert an inline annotation format to stand-off annotations to enable the reuse of clinical text datasets with in-line annotations. We experimented with our system on several NLP facilitated tasks including computational phenotyping for lymphoma patients and semantic relation extraction for clinical notes. These experiments showcased the broader applicability and utility of LAPNLP.

摘要

本文介绍了一种用于处理临床笔记的便携式自然语言处理(NLP)系统的Lisp架构,称为LAPNLP。LAPNLP集成了多个标准、定制和内部开发的NLP工具。我们的系统通过纳入丰富的通用数据模型(CDM)来标准化必要的数据元素,从而促进跨不同机构和数据系统的可移植性。在集成通用领域NLP工具时,它利用统一医学语言系统(UMLS)进行领域适配。它还具有通过对原始文档的位置引用指定的间接注释。我们构建了一个基于区间树的搜索引擎,通过指定位置要求来高效地查询和检索间接注释。我们还开发了一个实用程序,将内联注释格式转换为间接注释,以实现对带有内联注释的临床文本数据集的重用。我们在几个NLP辅助任务上对我们的系统进行了实验,包括淋巴瘤患者的计算表型分析和临床笔记的语义关系提取。这些实验展示了LAPNLP更广泛的适用性和实用性。

相似文献

1
Implementing a Portable Clinical NLP System with a Common Data Model - a Lisp Perspective.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2018 Dec;2018:461-466. doi: 10.1109/bibm.2018.8621521. Epub 2019 Jan 24.
2
Developing a portable natural language processing based phenotyping system.
BMC Med Inform Decis Mak. 2019 Apr 4;19(Suppl 3):78. doi: 10.1186/s12911-019-0786-z.
3
Ensembles of natural language processing systems for portable phenotyping solutions.
J Biomed Inform. 2019 Dec;100:103318. doi: 10.1016/j.jbi.2019.103318. Epub 2019 Oct 23.
4
Towards comprehensive syntactic and semantic annotations of the clinical narrative.
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):922-30. doi: 10.1136/amiajnl-2012-001317. Epub 2013 Jan 25.
5
Ontology-driven and weakly supervised rare disease identification from clinical notes.
BMC Med Inform Decis Mak. 2023 May 5;23(1):86. doi: 10.1186/s12911-023-02181-9.
7
8
Efficient Queries of Stand-off Annotations for Natural Language Processing on Electronic Medical Records.
Biomed Inform Insights. 2016 Jul 19;8:29-38. doi: 10.4137/BII.S38916. eCollection 2016.
9
Common data model for natural language processing based on two existing standard information models: CDA+GrAF.
J Biomed Inform. 2012 Aug;45(4):703-10. doi: 10.1016/j.jbi.2011.11.018. Epub 2011 Dec 8.
10
BENTO: A Visual Platform for Building Clinical NLP Pipelines Based on CodaLab.
Proc Conf Assoc Comput Linguist Meet. 2020 Jul;2020:95-100. doi: 10.18653/v1/2020.acl-demos.13.

引用本文的文献

2
Developing a portable natural language processing based phenotyping system.
BMC Med Inform Decis Mak. 2019 Apr 4;19(Suppl 3):78. doi: 10.1186/s12911-019-0786-z.

本文引用的文献

1
CLAMP - a toolkit for efficiently building customized clinical natural language processing pipelines.
J Am Med Inform Assoc. 2018 Mar 1;25(3):331-336. doi: 10.1093/jamia/ocx132.
2
Segment convolutional neural networks (Seg-CNNs) for classifying relations in clinical notes.
J Am Med Inform Assoc. 2018 Jan 1;25(1):93-98. doi: 10.1093/jamia/ocx090.
3
Recurrent neural networks for classifying relations in clinical notes.
J Biomed Inform. 2017 Aug;72:85-95. doi: 10.1016/j.jbi.2017.07.006. Epub 2017 Jul 8.
4
Efficient Queries of Stand-off Annotations for Natural Language Processing on Electronic Medical Records.
Biomed Inform Insights. 2016 Jul 19;8:29-38. doi: 10.4137/BII.S38916. eCollection 2016.
5
Bridging semantics and syntax with graph algorithms-state-of-the-art of extracting biomedical relations.
Brief Bioinform. 2017 Jan;18(1):160-178. doi: 10.1093/bib/bbw001. Epub 2016 Feb 5.
6
Subgraph augmented non-negative tensor factorization (SANTF) for modeling clinical narrative text.
J Am Med Inform Assoc. 2015 Sep;22(5):1009-19. doi: 10.1093/jamia/ocv016. Epub 2015 Apr 9.
7
Utilizing social media data for pharmacovigilance: A review.
J Biomed Inform. 2015 Apr;54:202-12. doi: 10.1016/j.jbi.2015.02.004. Epub 2015 Feb 23.
8
Automatic lymphoma classification with sentence subgraph mining from pathology reports.
J Am Med Inform Assoc. 2014 Sep-Oct;21(5):824-32. doi: 10.1136/amiajnl-2013-002443. Epub 2014 Jan 15.
9
A review of approaches to identifying patient phenotype cohorts using electronic health records.
J Am Med Inform Assoc. 2014 Mar-Apr;21(2):221-30. doi: 10.1136/amiajnl-2013-001935. Epub 2013 Nov 7.
10
Automatic extraction of relations between medical concepts in clinical texts.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):594-600. doi: 10.1136/amiajnl-2011-000153.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验