Suppr超能文献

用图算法弥合语义与句法——提取生物医学关系的研究现状

Bridging semantics and syntax with graph algorithms-state-of-the-art of extracting biomedical relations.

作者信息

Luo Yuan, Uzuner Özlem, Szolovits Peter

出版信息

Brief Bioinform. 2017 Jan;18(1):160-178. doi: 10.1093/bib/bbw001. Epub 2016 Feb 5.

Abstract

Research on extracting biomedical relations has received growing attention recently, with numerous biological and clinical applications including those in pharmacogenomics, clinical trial screening and adverse drug reaction detection. The ability to accurately capture both semantic and syntactic structures in text expressing these relations becomes increasingly critical to enable deep understanding of scientific papers and clinical narratives. Shared task challenges have been organized by both bioinformatics and clinical informatics communities to assess and advance the state-of-the-art research. Significant progress has been made in algorithm development and resource construction. In particular, graph-based approaches bridge semantics and syntax, often achieving the best performance in shared tasks. However, a number of problems at the frontiers of biomedical relation extraction continue to pose interesting challenges and present opportunities for great improvement and fruitful research. In this article, we place biomedical relation extraction against the backdrop of its versatile applications, present a gentle introduction to its general pipeline and shared resources, review the current state-of-the-art in methodology advancement, discuss limitations and point out several promising future directions.

摘要

最近,生物医学关系提取研究受到了越来越多的关注,其具有众多生物学和临床应用,包括药物基因组学、临床试验筛选和药物不良反应检测等方面的应用。准确捕捉表达这些关系的文本中的语义和句法结构的能力,对于深入理解科学论文和临床记录变得越来越关键。生物信息学和临床信息学社区都组织了共享任务挑战,以评估和推进当前的前沿研究。在算法开发和资源建设方面已经取得了重大进展。特别是,基于图的方法将语义和句法联系起来,在共享任务中常常取得最佳性能。然而,生物医学关系提取前沿的一些问题仍然构成有趣的挑战,并为巨大改进和富有成果的研究提供了机会。在本文中,我们将生物医学关系提取置于其广泛应用的背景下,简要介绍其一般流程和共享资源,回顾方法学进展的当前前沿,讨论局限性并指出几个有前景的未来方向。

相似文献

1
Bridging semantics and syntax with graph algorithms-state-of-the-art of extracting biomedical relations.
Brief Bioinform. 2017 Jan;18(1):160-178. doi: 10.1093/bib/bbw001. Epub 2016 Feb 5.
2
BertSRC: transformer-based semantic relation classification.
BMC Med Inform Decis Mak. 2022 Sep 6;22(1):234. doi: 10.1186/s12911-022-01977-5.
3
Biomedical relation extraction method based on ensemble learning and attention mechanism.
BMC Bioinformatics. 2024 Oct 18;25(1):333. doi: 10.1186/s12859-024-05951-y.
4
Exploiting semantic patterns over biomedical knowledge graphs for predicting treatment and causative relations.
J Biomed Inform. 2018 Jun;82:189-199. doi: 10.1016/j.jbi.2018.05.003. Epub 2018 May 12.
6
Wide-coverage relation extraction from MEDLINE using deep syntax.
BMC Bioinformatics. 2015 Apr 1;16:107. doi: 10.1186/s12859-015-0538-8.
8
Natural Language Processing for EHR-Based Pharmacovigilance: A Structured Review.
Drug Saf. 2017 Nov;40(11):1075-1089. doi: 10.1007/s40264-017-0558-6.
9
Extracting biomedical relation from cross-sentence text using syntactic dependency graph attention network.
J Biomed Inform. 2023 Aug;144:104445. doi: 10.1016/j.jbi.2023.104445. Epub 2023 Jul 17.
10
A graph-based recovery and decomposition of Swanson's hypothesis using semantic predications.
J Biomed Inform. 2013 Apr;46(2):238-51. doi: 10.1016/j.jbi.2012.09.004. Epub 2012 Sep 28.

引用本文的文献

4
An overview of biomedical entity linking throughout the years.
J Biomed Inform. 2023 Jan;137:104252. doi: 10.1016/j.jbi.2022.104252. Epub 2022 Dec 2.
5
Multimodal machine learning in precision health: A scoping review.
NPJ Digit Med. 2022 Nov 7;5(1):171. doi: 10.1038/s41746-022-00712-8.
6
BertSRC: transformer-based semantic relation classification.
BMC Med Inform Decis Mak. 2022 Sep 6;22(1):234. doi: 10.1186/s12911-022-01977-5.
7
Machine Learning in Causal Inference: Application in Pharmacovigilance.
Drug Saf. 2022 May;45(5):459-476. doi: 10.1007/s40264-022-01155-6. Epub 2022 May 17.
9
Early Prediction of Acute Kidney Injury in Critical Care Setting Using Clinical Notes.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2018 Dec;2018:683-686. doi: 10.1109/bibm.2018.8621574. Epub 2019 Jan 24.
10
Implementing a Portable Clinical NLP System with a Common Data Model - a Lisp Perspective.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2018 Dec;2018:461-466. doi: 10.1109/bibm.2018.8621521. Epub 2019 Jan 24.

本文引用的文献

1
Indexed Pain Journals.
J Pain Palliat Care Pharmacother. 2008;22(1):45-46. doi: 10.1080/15360280801989377.
2
Sieve-based relation extraction of gene regulatory networks from biological literature.
BMC Bioinformatics. 2015;16 Suppl 16(Suppl 16):S1. doi: 10.1186/1471-2105-16-S16-S1. Epub 2015 Oct 30.
3
Recent Advances and Emerging Applications in Text and Data Mining for Biomedical Discovery.
Brief Bioinform. 2016 Jan;17(1):33-42. doi: 10.1093/bib/bbv087. Epub 2015 Sep 29.
4
PubChem Substance and Compound databases.
Nucleic Acids Res. 2016 Jan 4;44(D1):D1202-13. doi: 10.1093/nar/gkv951. Epub 2015 Sep 22.
5
The contribution of co-reference resolution to supervised relation detection between bacteria and biotopes entities.
BMC Bioinformatics. 2015;16 Suppl 10(Suppl 10):S6. doi: 10.1186/1471-2105-16-S10-S6. Epub 2015 Jul 13.
6
Detection and categorization of bacteria habitats using shallow linguistic analysis.
BMC Bioinformatics. 2015;16 Suppl 10(Suppl 10):S5. doi: 10.1186/1471-2105-16-S10-S5. Epub 2015 Jul 13.
7
Semi-Supervised Learning to Identify UMLS Semantic Relations.
AMIA Jt Summits Transl Sci Proc. 2014 Apr 7;2014:67-75. eCollection 2014.
8
Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources.
J Am Med Inform Assoc. 2015 Sep;22(5):993-1000. doi: 10.1093/jamia/ocv034. Epub 2015 Apr 29.
9
Subgraph augmented non-negative tensor factorization (SANTF) for modeling clinical narrative text.
J Am Med Inform Assoc. 2015 Sep;22(5):1009-19. doi: 10.1093/jamia/ocv016. Epub 2015 Apr 9.
10
Utilizing social media data for pharmacovigilance: A review.
J Biomed Inform. 2015 Apr;54:202-12. doi: 10.1016/j.jbi.2015.02.004. Epub 2015 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验