Suppr超能文献

用于对临床记录中的关系进行分类的循环神经网络。

Recurrent neural networks for classifying relations in clinical notes.

作者信息

Luo Yuan

机构信息

Department of Preventive Medicine, Division of Health and Biomedical Informatics, Northwestern University, Chicago, IL, United States.

出版信息

J Biomed Inform. 2017 Aug;72:85-95. doi: 10.1016/j.jbi.2017.07.006. Epub 2017 Jul 8.

Abstract

We proposed the first models based on recurrent neural networks (more specifically Long Short-Term Memory - LSTM) for classifying relations from clinical notes. We tested our models on the i2b2/VA relation classification challenge dataset. We showed that our segment LSTM model, with only word embedding feature and no manual feature engineering, achieved a micro-averaged f-measure of 0.661 for classifying medical problem-treatment relations, 0.800 for medical problem-test relations, and 0.683 for medical problem-medical problem relations. These results are comparable to those of the state-of-the-art systems on the i2b2/VA relation classification challenge. We compared the segment LSTM model with the sentence LSTM model, and demonstrated the benefits of exploring the difference between concept text and context text, and between different contextual parts in the sentence. We also evaluated the impact of word embedding on the performance of LSTM models and showed that medical domain word embedding help improve the relation classification. These results support the use of LSTM models for classifying relations between medical concepts, as they show comparable performance to previously published systems while requiring no manual feature engineering.

摘要

我们提出了首个基于循环神经网络(更具体地说是长短期记忆网络 - LSTM)的模型,用于对临床记录中的关系进行分类。我们在i2b2/VA关系分类挑战数据集上测试了我们的模型。我们表明,我们的片段LSTM模型,仅具有词嵌入特征且无需人工特征工程,在对医疗问题 - 治疗关系进行分类时,微平均F值达到0.661,对医疗问题 - 测试关系为0.800,对医疗问题 - 医疗问题关系为0.683。这些结果与i2b2/VA关系分类挑战中最先进系统的结果相当。我们将片段LSTM模型与句子LSTM模型进行了比较,并证明了探索概念文本与上下文文本之间以及句子中不同上下文部分之间差异的好处。我们还评估了词嵌入对LSTM模型性能的影响,并表明医学领域词嵌入有助于提高关系分类。这些结果支持使用LSTM模型对医学概念之间的关系进行分类,因为它们显示出与先前发表的系统相当的性能,同时无需人工特征工程。

相似文献

4
Entity recognition from clinical texts via recurrent neural network.基于循环神经网络的临床文本实体识别。
BMC Med Inform Decis Mak. 2017 Jul 5;17(Suppl 2):67. doi: 10.1186/s12911-017-0468-7.
8
Temporal indexing of medical entity in Chinese clinical notes.中文临床记录中医疗实体的时间索引。
BMC Med Inform Decis Mak. 2019 Jan 31;19(Suppl 1):17. doi: 10.1186/s12911-019-0735-x.

引用本文的文献

10
Extracting Adverse Drug Events from Clinical Notes.从临床记录中提取药物不良反应。
AMIA Jt Summits Transl Sci Proc. 2021 May 17;2021:420-429. eCollection 2021.

本文引用的文献

2
Neural Semantic Encoders.神经语义编码器
Proc Conf Assoc Comput Linguist Meet. 2017 Apr;1:397-407.
9
Long-Term Recurrent Convolutional Networks for Visual Recognition and Description.长期递归卷积网络的视觉识别与描述。
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):677-691. doi: 10.1109/TPAMI.2016.2599174. Epub 2016 Sep 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验