Suppr超能文献

超分辨率成像揭示肺癌细胞膜上Trop2聚集的机制洞察

Mechanistic Insights into Trop2 Clustering on Lung Cancer Cell Membranes Revealed by Super-resolution Imaging.

作者信息

Fu Yilin, Hua Peiyan, Lou Yan, Li Zihao, Jia Meng, Jing Yingying, Cai Mingjun, Wang Hongda, Tong Ti, Gao Jing

机构信息

The Second Hospital of Jilin University, No. 218, Ziqiang Road, Changchun, Jilin 130041, China.

State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun, Jilin 130022, China.

出版信息

ACS Omega. 2020 Dec 8;5(50):32456-32465. doi: 10.1021/acsomega.0c04597. eCollection 2020 Dec 22.

Abstract

The transmembrane glycoprotein Trop2 plays important roles in various types of human cancers, especially lung cancer. Although it has been found to form clusters on cancer cell membranes, the factors that affect its clustering are not yet fully understood. Here, using direct stochastic optical reconstruction microscopy (dSTORM), we found that Trop2 generated more, larger, and denser clusters on apical cell membranes than on basal membranes and that the differences might be related to the different membrane structures. Moreover, dual-color dSTORM imaging revealed significant colocalization of Trop2 and lipid rafts, and methyl-β-cyclodextrin disruption dramatically impaired the formation of Trop2 clusters, indicating a key role of lipid rafts in Trop2 clustering. Additionally, depolymerization of the actin cytoskeleton decreased Trop2 cluster numbers and areas, revealing that actin can stabilize the clusters. More importantly, stimulation of Trop2 in cancer cells hardly changed the cluster morphology, suggesting that Trop2 is activated and forms clusters in cancer cells. Altogether, our work links the spatial organization of Trop2 to different membrane structures and Trop activation and uncovers the essential roles of lipid rafts and actin in Trop2 cluster maintenance.

摘要

跨膜糖蛋白Trop2在各类人类癌症尤其是肺癌中发挥着重要作用。尽管已发现它在癌细胞膜上形成簇,但影响其簇形成的因素尚未完全明确。在此,我们使用直接随机光学重建显微镜(dSTORM)发现,Trop2在顶端细胞膜上形成的簇比在基底膜上更多、更大且更密集,这些差异可能与不同的膜结构有关。此外,双色dSTORM成像显示Trop2与脂筏有显著共定位,甲基-β-环糊精破坏显著损害了Trop2簇的形成,表明脂筏在Trop2簇形成中起关键作用。此外,肌动蛋白细胞骨架的解聚减少了Trop2簇的数量和面积,表明肌动蛋白可稳定这些簇。更重要的是,刺激癌细胞中的Trop2几乎不会改变簇的形态,这表明Trop2在癌细胞中被激活并形成簇。总之,我们的工作将Trop2的空间组织与不同的膜结构及Trop激活联系起来,并揭示了脂筏和肌动蛋白在维持Trop2簇中的重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/150b/7758963/517db0b62185/ao0c04597_0002.jpg

相似文献

1
Mechanistic Insights into Trop2 Clustering on Lung Cancer Cell Membranes Revealed by Super-resolution Imaging.
ACS Omega. 2020 Dec 8;5(50):32456-32465. doi: 10.1021/acsomega.0c04597. eCollection 2020 Dec 22.
2
Variation of Trop2 on non-small-cell lung cancer and normal cell membranes revealed by super-resolution fluorescence imaging.
Talanta. 2020 Jan 15;207:120312. doi: 10.1016/j.talanta.2019.120312. Epub 2019 Sep 3.
3
Mechanistic insights into EGFR membrane clustering revealed by super-resolution imaging.
Nanoscale. 2015 Feb 14;7(6):2511-9. doi: 10.1039/c4nr04962d.
4
Mechanistic insights into GLUT1 activation and clustering revealed by super-resolution imaging.
Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):7033-7038. doi: 10.1073/pnas.1803859115. Epub 2018 Jun 18.
5
Revealing the carbohydrate pattern on a cell surface by super-resolution imaging.
Nanoscale. 2015 Feb 28;7(8):3373-80. doi: 10.1039/c4nr05970k.
7
Super-resolution imaging of cancer-associated carbohydrates using aptamer probes.
Nanoscale. 2019 Aug 8;11(31):14879-14886. doi: 10.1039/c9nr03948a.
8
Mechanistic insights into CDCP1 clustering on non-small-cell lung cancer membranes revealed by super-resolution fluorescent imaging.
iScience. 2023 Feb 2;26(3):106103. doi: 10.1016/j.isci.2023.106103. eCollection 2023 Mar 17.
9
Quantitatively Mapping the Assembly Pattern of EpCAM on Cell Membranes with Peptide Probes.
Anal Chem. 2020 Jan 21;92(2):1865-1873. doi: 10.1021/acs.analchem.9b03901. Epub 2020 Jan 8.
10
Super-resolution microscopy reveals the insulin-resistance-regulated reorganization of GLUT4 on plasma membranes.
J Cell Sci. 2017 Jan 15;130(2):396-405. doi: 10.1242/jcs.192450. Epub 2016 Nov 25.

引用本文的文献

1
Biomembrane structure at the molecular level and its application in precision medicine.
Biophys Rev (Melville). 2025 Feb 18;6(1):011306. doi: 10.1063/5.0213964. eCollection 2025 Mar.
2
Trop2-Targeted Molecular Imaging in Solid Tumors: Current Advances and Future Outlook.
Mol Pharm. 2024 Dec 2;21(12):5909-5928. doi: 10.1021/acs.molpharmaceut.4c00848. Epub 2024 Nov 13.
3
Targeting Trop2 in solid tumors: a look into structures and novel epitopes.
Front Immunol. 2023 Dec 20;14:1332489. doi: 10.3389/fimmu.2023.1332489. eCollection 2023.

本文引用的文献

1
NanoJ: a high-performance open-source super-resolution microscopy toolbox.
J Phys D Appl Phys. 2019 Apr 17;52(16):163001. doi: 10.1088/1361-6463/ab0261. Epub 2019 Feb 18.
4
Mechanical force regulation of YAP by F-actin and GPCR revealed by super-resolution imaging.
Nanoscale. 2020 Jan 28;12(4):2703-2714. doi: 10.1039/c9nr09452k. Epub 2020 Jan 17.
5
Quantitatively Mapping the Assembly Pattern of EpCAM on Cell Membranes with Peptide Probes.
Anal Chem. 2020 Jan 21;92(2):1865-1873. doi: 10.1021/acs.analchem.9b03901. Epub 2020 Jan 8.
6
Current Approaches in NSCLC Targeting K-RAS and EGFR.
Int J Mol Sci. 2019 Nov 14;20(22):5701. doi: 10.3390/ijms20225701.
7
Carcinogenesis and Metastasis in Liver: Cell Physiological Basis.
Cancers (Basel). 2019 Nov 5;11(11):1731. doi: 10.3390/cancers11111731.
8
TROP2 increases growth and metastasis of human oral squamous cell carcinoma through activation of the PI3K/Akt signaling pathway.
Int J Mol Med. 2019 Dec;44(6):2161-2170. doi: 10.3892/ijmm.2019.4378. Epub 2019 Oct 21.
9
Variation of Trop2 on non-small-cell lung cancer and normal cell membranes revealed by super-resolution fluorescence imaging.
Talanta. 2020 Jan 15;207:120312. doi: 10.1016/j.talanta.2019.120312. Epub 2019 Sep 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验