Makaryan Sahak Z, Finley Stacey D
Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
Department of Biomedical Engineering, Mork Family Department of Chemical Engineering and Materials Science, and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA.
APL Bioeng. 2020 Dec 22;4(4):046107. doi: 10.1063/5.0024726. eCollection 2020 Dec.
Natural killer (NK) cells are immune effector cells that can detect and lyse cancer cells. However, NK cell exhaustion, a phenotype characterized by reduced secretion of cytolytic models upon serial stimulation, limits the NK cell's ability to lyse cells. In this work, we investigated strategies that counteract the NK cell's reduced secretion of cytolytic molecules. To accomplish this goal, we constructed a mathematical model that describes the dynamics of the cytolytic molecules granzyme B (GZMB) and perforin-1 (PRF1) and calibrated the model predictions to published experimental data using a Bayesian parameter estimation approach. We applied an information-theoretic approach to perform a global sensitivity analysis, from which we found that the suppression of phosphatase activity maximizes the secretion of GZMB and PRF1. However, simply reducing the phosphatase activity is shown to deplete the cell's intracellular pools of GZMB and PRF1. Thus, we added a synthetic Notch (synNotch) signaling circuit to our baseline model as a method for controlling the secretion of GZMB and PRF1 by inhibiting phosphatase activity and increasing production of GZMB and PRF1. We found that the optimal synNotch system depends on the frequency of NK cell stimulation. For only a few rounds of stimulation, the model predicts that inhibition of phosphatase activity leads to more secreted GZMB and PRF1; however, for many rounds of stimulation, the model reveals that increasing production of the cytolytic molecules is the optimal strategy. In total, we developed a mathematical framework that provides actionable insight into engineering robust NK cells for clinical applications.
自然杀伤(NK)细胞是能够检测并裂解癌细胞的免疫效应细胞。然而,NK细胞耗竭是一种在连续刺激后以细胞溶解模式分泌减少为特征的表型,它限制了NK细胞裂解细胞的能力。在这项研究中,我们研究了对抗NK细胞细胞溶解分子分泌减少的策略。为实现这一目标,我们构建了一个数学模型,该模型描述了细胞溶解分子颗粒酶B(GZMB)和穿孔素-1(PRF1)的动态变化,并使用贝叶斯参数估计方法将模型预测结果与已发表的实验数据进行校准。我们应用信息论方法进行全局敏感性分析,从中发现抑制磷酸酶活性可使GZMB和PRF1的分泌最大化。然而,单纯降低磷酸酶活性会导致细胞内GZMB和PRF1储备耗尽。因此,我们在基线模型中添加了一个合成Notch(synNotch)信号回路,作为通过抑制磷酸酶活性和增加GZMB和PRF1的产生来控制GZMB和PRF1分泌的一种方法。我们发现,最佳的synNotch系统取决于NK细胞刺激的频率。对于仅几轮刺激,模型预测抑制磷酸酶活性会导致更多的GZMB和PRF1分泌;然而,对于多轮刺激,模型表明增加细胞溶解分子的产生是最佳策略。总的来说,我们开发了一个数学框架,为临床应用中设计强大的NK细胞提供了可行的见解。