Surewicz W K, Mantsch H H
Division of Chemistry, National Research Coucil of Canada, Ottawa, Ontario.
Biochem Biophys Res Commun. 1988 Jan 15;150(1):245-51. doi: 10.1016/0006-291x(88)90512-8.
The backbone conformation of the two opioid pentapeptides Leu5-enkephalin and Met5-enkephalin was studied by the technique of resolution-enhanced infrared spectroscopy. In aqueous solution, the conformation-sensitive amide I bands of the two peptides are identical. The positions of these bands are consistent with the view that in aqueous solution both enkephalins exist as an ensemble of largely unfolded conformers. Interaction of Leu5- and Met5-enkephalins with bilayer membranes of ditetradecylphosphatidylcholine results in a substantial refolding of the peptide backbones. The conformation stabilized by the membrane environment is a hydrogen-bonded turn structure. Conformational transitions in enkephalins induced by a lipid environment may play a role in the specific interactions between these hormones and their receptor sites.