Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.
Section on Gerontology and Geriatrics, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.
J Gerontol A Biol Sci Med Sci. 2021 Feb 25;76(3):434-439. doi: 10.1093/gerona/glaa299.
Heterochronic parabiosis models have been utilized to demonstrate the role of blood-borne circulating factors in systemic effects of aging. In previous studies, heterochronic parabiosis has shown positive effects across multiple tissues in old mice. More recently, a study demonstrated old blood had a more profound negative effect on muscle performance and neurogenesis of young mice. In this study, we used heterochronic parabiosis to test the hypothesis that circulating factors mediate mitochondrial bioenergetic decline, a well-established biological hallmark of aging. We examined mitochondrial morphology, expression of mitochondrial complexes, and mitochondrial respiration from skeletal muscle of mice connected as heterochronic pairs, as well as young and old isochronic controls. Our results indicate that young heterochronic mice had significantly lower total mitochondrial content and on average had significantly smaller mitochondria compared to young isochronic controls. Expression of complex IV followed a similar pattern: young heterochronic mice had a trend for lower expression compared to young isochronic controls. Additionally, respirometric analyses indicate that young heterochronic mice had significantly lower complex I, complex I + II, and maximal mitochondrial respiration and a trend for lower complex II-driven respiration compared to young isochronic controls. Interestingly, we did not observe significant improvements in old heterochronic mice compared to old isochronic controls, demonstrating the profound deleterious effects of circulating factors from old mice on mitochondrial structure and function. We also found no significant differences between the young and old heterochronic mice, demonstrating that circulating factors can be a driver of age-related differences in mitochondrial structure and function.
异时共生模型已被用于证明血液传播的循环因子在衰老的全身效应中的作用。在以前的研究中,异时共生在老年小鼠的多种组织中表现出积极的影响。最近,一项研究表明,老年血液对年轻小鼠的肌肉性能和神经发生有更深远的负面影响。在这项研究中,我们使用异时共生来测试循环因子是否介导线粒体生物能下降的假设,这是衰老的一个公认的生物学标志。我们检查了连接成异时共生对的小鼠骨骼肌中的线粒体形态、线粒体复合物的表达和线粒体呼吸作用,以及年轻和老年同型对照组。我们的结果表明,年轻的异时共生小鼠的总线粒体含量明显较低,平均而言,与年轻的同型对照组相比,线粒体明显较小。复合物 IV 的表达也呈现出类似的模式:年轻的异时共生小鼠的表达趋势低于年轻的同型对照组。此外,呼吸计分析表明,与年轻的同型对照组相比,年轻的异时共生小鼠的复合物 I、复合物 I + II 和最大线粒体呼吸作用显著降低,复合物 II 驱动的呼吸作用也有降低的趋势。有趣的是,与老年同型对照组相比,我们没有观察到老年异时共生小鼠的显著改善,这表明老年小鼠的循环因子对线粒体结构和功能有深远的有害影响。我们还没有发现年轻和老年异时共生小鼠之间有显著差异,这表明循环因子是导致线粒体结构和功能与年龄相关差异的一个驱动因素。