Elm Jonas
Department of Chemistry and iClimate, Aarhus University, Langelandsgade 140, Aarhus, Denmark.
J Phys Chem A. 2021 Feb 4;125(4):895-902. doi: 10.1021/acs.jpca.0c09762. Epub 2020 Dec 30.
The formation of atmospheric molecular clusters is an important stage in forming new particles in the atmosphere. Despite being a highly focused research area, the exact chemical species involved in the initial steps in new particle formation remain elusive. In this Perspective the main challenges and recent progression in the field are outlined with a special emphasis on the chemical complexity of the puzzle and prospect of modeling larger clusters. In general, there is a high demand for accurate and more complete quantum chemical data sets that can be applied in cluster distribution dynamics models and coupled to atmospheric chemical transport models. A view on how the community could reach this goal by applying data-driven machine learning approaches for more efficient exploration of cluster configurations is presented. A path toward larger clusters and direct molecular dynamics simulations of cluster formation and growth using machine learning models is discussed.
大气分子团簇的形成是大气中形成新粒子的一个重要阶段。尽管这是一个高度聚焦的研究领域,但新粒子形成初始步骤中涉及的确切化学物种仍然难以捉摸。在这篇综述中,概述了该领域的主要挑战和最新进展,特别强调了这一难题的化学复杂性以及对更大团簇进行建模的前景。一般来说,对准确且更完整的量子化学数据集有很高的需求,这些数据集可应用于团簇分布动力学模型,并与大气化学传输模型相结合。本文提出了一种观点,即通过应用数据驱动的机器学习方法来更有效地探索团簇构型,科学界如何能够实现这一目标。还讨论了使用机器学习模型迈向更大团簇以及对团簇形成和生长进行直接分子动力学模拟的途径。