Suppr超能文献

从量子机器学习视角全面理解大气分子团簇的形成与生长

Toward a Holistic Understanding of the Formation and Growth of Atmospheric Molecular Clusters: A Quantum Machine Learning Perspective.

作者信息

Elm Jonas

机构信息

Department of Chemistry and iClimate, Aarhus University, Langelandsgade 140, Aarhus, Denmark.

出版信息

J Phys Chem A. 2021 Feb 4;125(4):895-902. doi: 10.1021/acs.jpca.0c09762. Epub 2020 Dec 30.

Abstract

The formation of atmospheric molecular clusters is an important stage in forming new particles in the atmosphere. Despite being a highly focused research area, the exact chemical species involved in the initial steps in new particle formation remain elusive. In this Perspective the main challenges and recent progression in the field are outlined with a special emphasis on the chemical complexity of the puzzle and prospect of modeling larger clusters. In general, there is a high demand for accurate and more complete quantum chemical data sets that can be applied in cluster distribution dynamics models and coupled to atmospheric chemical transport models. A view on how the community could reach this goal by applying data-driven machine learning approaches for more efficient exploration of cluster configurations is presented. A path toward larger clusters and direct molecular dynamics simulations of cluster formation and growth using machine learning models is discussed.

摘要

大气分子团簇的形成是大气中形成新粒子的一个重要阶段。尽管这是一个高度聚焦的研究领域,但新粒子形成初始步骤中涉及的确切化学物种仍然难以捉摸。在这篇综述中,概述了该领域的主要挑战和最新进展,特别强调了这一难题的化学复杂性以及对更大团簇进行建模的前景。一般来说,对准确且更完整的量子化学数据集有很高的需求,这些数据集可应用于团簇分布动力学模型,并与大气化学传输模型相结合。本文提出了一种观点,即通过应用数据驱动的机器学习方法来更有效地探索团簇构型,科学界如何能够实现这一目标。还讨论了使用机器学习模型迈向更大团簇以及对团簇形成和生长进行直接分子动力学模拟的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验