Gusarov Sergey
Digital Technologies Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
Materials (Basel). 2024 Apr 30;17(9):2119. doi: 10.3390/ma17092119.
Photocatalysis is a fascinating process in which a photocatalyst plays a pivotal role in driving a chemical reaction when exposed to light. Its capacity to harness light energy triggers a cascade of reactions that lead to the formation of intermediate compounds, culminating in the desired final product(s). The essence of this process is the interaction between the photocatalyst's excited state and its specific interactions with reactants, resulting in the creation of intermediates. The process's appeal is further enhanced by its cyclic nature-the photocatalyst is rejuvenated after each cycle, ensuring ongoing and sustainable catalytic action. Nevertheless, comprehending the photocatalytic process through the modeling of photoactive materials and molecular devices demands advanced computational techniques founded on effective quantum chemistry methods, multiscale modeling, and machine learning. This review analyzes contemporary theoretical methods, spanning a range of lengths and accuracy scales, and assesses the strengths and limitations of these methods. It also explores the future challenges in modeling complex nano-photocatalysts, underscoring the necessity of integrating various methods hierarchically to optimize resource distribution across different scales. Additionally, the discussion includes the role of excited state chemistry, a crucial element in understanding photocatalysis.
光催化是一个引人入胜的过程,在这个过程中,光催化剂在光照下驱动化学反应时起着关键作用。它利用光能的能力引发一系列反应,最终导致中间化合物的形成,并最终生成所需的最终产物。这个过程的本质是光催化剂的激发态与其与反应物的特定相互作用之间的相互作用,从而产生中间体。该过程的吸引力因其循环性质而进一步增强——光催化剂在每个循环后都会恢复活力,确保持续且可持续的催化作用。然而,通过光活性材料和分子器件的建模来理解光催化过程需要基于有效的量子化学方法、多尺度建模和机器学习的先进计算技术。本文综述分析了当代理论方法,涵盖了一系列长度和精度尺度,并评估了这些方法的优缺点。它还探讨了复杂纳米光催化剂建模中的未来挑战,强调了分层整合各种方法以优化不同尺度资源分配的必要性。此外,讨论还包括激发态化学的作用,这是理解光催化的关键要素。